Variables in Discretise Domain (#139)
* fix problems discretise_domain * adding docs, fixing tests
This commit is contained in:
committed by
Nicola Demo
parent
39f96c7eab
commit
6c8635c316
@@ -1,6 +1,6 @@
|
||||
""" Module for AbstractProblem class """
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from ..utils import merge_tensors
|
||||
from ..utils import merge_tensors, check_consistency
|
||||
|
||||
|
||||
class AbstractProblem(metaclass=ABCMeta):
|
||||
@@ -111,53 +111,97 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
continue
|
||||
self.input_pts[condition_name] = samples
|
||||
|
||||
def discretise_domain(self, *args, **kwargs):
|
||||
def discretise_domain(self, n, mode = 'random', variables = 'all', locations = 'all'):
|
||||
"""
|
||||
Generate a set of points to span the `Location` of all the conditions of
|
||||
the problem.
|
||||
|
||||
>>> pinn.span_pts(n=10, mode='grid')
|
||||
>>> pinn.span_pts(n=10, mode='grid', location=['bound1'])
|
||||
>>> pinn.span_pts(n=10, mode='grid', variables=['x'])
|
||||
:param n: Number of points to sample, see Note below
|
||||
for reference.
|
||||
:type n: int
|
||||
:param mode: Mode for sampling, defaults to ``random``.
|
||||
Available modes include: random sampling, ``random``;
|
||||
latin hypercube sampling, ``latin`` or ``lh``;
|
||||
chebyshev sampling, ``chebyshev``; grid sampling ``grid``.
|
||||
:param variables: problem's variables to be sampled, defaults to 'all'.
|
||||
:type variables: str or list[str], optional
|
||||
:param locations: problem's locations from where to sample, defaults to 'all'.
|
||||
:type locations: str, optional
|
||||
|
||||
:Example:
|
||||
>>> pinn.span_pts(n=10, mode='grid')
|
||||
>>> pinn.span_pts(n=10, mode='grid', location=['bound1'])
|
||||
>>> pinn.span_pts(n=10, mode='grid', variables=['x'])
|
||||
|
||||
.. warning::
|
||||
``random`` is currently the only implemented ``mode`` for all geometries, i.e.
|
||||
``EllipsoidDomain``, ``CartesianDomain``, ``SimplexDomain`` and the geometries
|
||||
compositions ``Union``, ``Difference``, ``Exclusion``, ``Intersection``. The
|
||||
modes ``latin`` or ``lh``, ``chebyshev``, ``grid`` are only implemented for
|
||||
``CartesianDomain``.
|
||||
"""
|
||||
if all(key in kwargs for key in ['n', 'mode']):
|
||||
argument = {}
|
||||
argument['n'] = kwargs['n']
|
||||
argument['mode'] = kwargs['mode']
|
||||
argument['variables'] = self.input_variables
|
||||
arguments = [argument]
|
||||
elif any(key in kwargs for key in ['n', 'mode']) and args:
|
||||
raise ValueError("Don't mix args and kwargs")
|
||||
elif isinstance(args[0], int) and isinstance(args[1], str):
|
||||
argument = {}
|
||||
argument['n'] = int(args[0])
|
||||
argument['mode'] = args[1]
|
||||
argument['variables'] = self.input_variables
|
||||
arguments = [argument]
|
||||
elif all(isinstance(arg, dict) for arg in args):
|
||||
arguments = args
|
||||
|
||||
# check consistecy n
|
||||
check_consistency(n, int)
|
||||
|
||||
# check consistency mode
|
||||
check_consistency(mode, str)
|
||||
if mode not in ['random', 'grid', 'lh', 'chebyshev', 'latin']:
|
||||
raise TypeError(f'mode {mode} not valid.')
|
||||
|
||||
# check consistency variables
|
||||
if variables == 'all':
|
||||
variables = self.input_variables
|
||||
else:
|
||||
raise RuntimeError
|
||||
|
||||
locations = kwargs.get('locations', 'all')
|
||||
|
||||
check_consistency(variables, str)
|
||||
|
||||
if sorted(variables) != sorted(self.input_variables):
|
||||
TypeError(f'Wrong variables for sampling. Variables ',
|
||||
f'should be in {self.input_variables}.')
|
||||
|
||||
# check consistency location
|
||||
if locations == 'all':
|
||||
locations = [condition for condition in self.conditions]
|
||||
else:
|
||||
check_consistency(locations, str)
|
||||
|
||||
if sorted(locations) != sorted(self.conditions):
|
||||
TypeError(f'Wrong locations for sampling. Location ',
|
||||
f'should be in {self.conditions}.')
|
||||
|
||||
# sampling
|
||||
for location in locations:
|
||||
condition = self.conditions[location]
|
||||
|
||||
samples = tuple(condition.location.sample(
|
||||
argument['n'],
|
||||
argument['mode'],
|
||||
variables=argument['variables'])
|
||||
for argument in arguments)
|
||||
# we try to check if we have already sampled
|
||||
try:
|
||||
already_sampled = [self.input_pts[location]]
|
||||
# if we have not sampled, a key error is thrown
|
||||
except KeyError:
|
||||
already_sampled = []
|
||||
|
||||
# if we have already sampled fully the condition
|
||||
# but we want to sample again we set already_sampled
|
||||
# to an empty list since we need to sample again, and
|
||||
# self._have_sampled_points to False.
|
||||
if self._have_sampled_points[location]:
|
||||
already_sampled = []
|
||||
self._have_sampled_points[location] = False
|
||||
|
||||
# build samples
|
||||
samples = [condition.location.sample(
|
||||
n=n,
|
||||
mode=mode,
|
||||
variables=variables)
|
||||
] + already_sampled
|
||||
pts = merge_tensors(samples)
|
||||
self.input_pts[location] = pts
|
||||
# setting the grad
|
||||
self.input_pts[location].requires_grad_(True)
|
||||
self.input_pts[location].retain_grad()
|
||||
# the condition is sampled
|
||||
self._have_sampled_points[location] = True
|
||||
# the condition is sampled if input_pts contains all labels
|
||||
if sorted(self.input_pts[location].labels) == sorted(self.input_variables):
|
||||
self._have_sampled_points[location] = True
|
||||
|
||||
@property
|
||||
def have_sampled_points(self):
|
||||
|
||||
@@ -78,20 +78,26 @@ def test_discretise_domain():
|
||||
poisson_problem.discretise_domain(n, 'lh', locations=['D'])
|
||||
assert poisson_problem.input_pts['D'].shape[0] == n
|
||||
|
||||
def test_sampling_all_args():
|
||||
def test_sampling_few_variables():
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=['D'])
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=['D'], variables=['x'])
|
||||
assert poisson_problem.input_pts['D'].shape[1] == 1
|
||||
assert poisson_problem._have_sampled_points['D'] is False
|
||||
|
||||
def test_sampling_all_kwargs():
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n=n, mode='latin', locations=['D'])
|
||||
# def test_sampling_all_args():
|
||||
# n = 10
|
||||
# poisson_problem.discretise_domain(n, 'grid', locations=['D'])
|
||||
|
||||
def test_sampling_dict():
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(
|
||||
{'variables': ['x', 'y'], 'mode': 'grid', 'n': n}, locations=['D'])
|
||||
# def test_sampling_all_kwargs():
|
||||
# n = 10
|
||||
# poisson_problem.discretise_domain(n=n, mode='latin', locations=['D'])
|
||||
|
||||
def test_sampling_mixed_args_kwargs():
|
||||
n = 10
|
||||
with pytest.raises(ValueError):
|
||||
poisson_problem.discretise_domain(n, mode='latin', locations=['D'])
|
||||
# def test_sampling_dict():
|
||||
# n = 10
|
||||
# poisson_problem.discretise_domain(
|
||||
# {'variables': ['x', 'y'], 'mode': 'grid', 'n': n}, locations=['D'])
|
||||
|
||||
# def test_sampling_mixed_args_kwargs():
|
||||
# n = 10
|
||||
# with pytest.raises(ValueError):
|
||||
# poisson_problem.discretise_domain(n, mode='latin', locations=['D'])
|
||||
Reference in New Issue
Block a user