Update Tutorials 0.2 (#490)
This commit is contained in:
committed by
Nicola Demo
parent
beee4cdc0b
commit
6ce0bafc2b
145
tutorials/tutorial5/tutorial.ipynb
vendored
145
tutorials/tutorial5/tutorial.ipynb
vendored
File diff suppressed because one or more lines are too long
189
tutorials/tutorial5/tutorial.py
vendored
189
tutorials/tutorial5/tutorial.py
vendored
@@ -1,189 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# # Tutorial: Two dimensional Darcy flow using the Fourier Neural Operator
|
||||
#
|
||||
# [](https://colab.research.google.com/github/mathLab/PINA/blob/master/tutorials/tutorial5/tutorial.ipynb)
|
||||
#
|
||||
|
||||
# In this tutorial we are going to solve the Darcy flow problem in two dimensions, presented in [*Fourier Neural Operator for
|
||||
# Parametric Partial Differential Equation*](https://openreview.net/pdf?id=c8P9NQVtmnO). First of all we import the modules needed for the tutorial. Importing `scipy` is needed for input-output operations.
|
||||
|
||||
# In[1]:
|
||||
|
||||
|
||||
## routine needed to run the notebook on Google Colab
|
||||
try:
|
||||
import google.colab
|
||||
IN_COLAB = True
|
||||
except:
|
||||
IN_COLAB = False
|
||||
if IN_COLAB:
|
||||
get_ipython().system('pip install "pina-mathlab"')
|
||||
get_ipython().system('pip install scipy')
|
||||
# get the data
|
||||
get_ipython().system('wget https://github.com/mathLab/PINA/raw/refs/heads/master/tutorials/tutorial5/Data_Darcy.mat')
|
||||
|
||||
import torch
|
||||
import matplotlib.pyplot as plt
|
||||
import warnings
|
||||
|
||||
# !pip install scipy # install scipy
|
||||
from scipy import io
|
||||
from pina.model import FNO, FeedForward # let's import some models
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.solver import SupervisedSolver
|
||||
from pina.trainer import Trainer
|
||||
from pina.problem import AbstractProblem
|
||||
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
|
||||
# ## Data Generation
|
||||
#
|
||||
# We will focus on solving a specific PDE, the **Darcy Flow** equation. The Darcy PDE is a second-order elliptic PDE with the following form:
|
||||
#
|
||||
# $$
|
||||
# -\nabla\cdot(k(x, y)\nabla u(x, y)) = f(x) \quad (x, y) \in D.
|
||||
# $$
|
||||
#
|
||||
# Specifically, $u$ is the flow pressure, $k$ is the permeability field and $f$ is the forcing function. The Darcy flow can parameterize a variety of systems including flow through porous media, elastic materials and heat conduction. Here you will define the domain as a 2D unit square Dirichlet boundary conditions. The dataset is taken from the authors original reference.
|
||||
#
|
||||
|
||||
# In[2]:
|
||||
|
||||
|
||||
# download the dataset
|
||||
data = io.loadmat("Data_Darcy.mat")
|
||||
|
||||
# extract data (we use only 100 data for train)
|
||||
k_train = LabelTensor(torch.tensor(data['k_train'], dtype=torch.float).unsqueeze(-1),
|
||||
labels={3:{'dof': ['u0'], 'name': 'k_train'}})
|
||||
u_train = LabelTensor(torch.tensor(data['u_train'], dtype=torch.float).unsqueeze(-1),
|
||||
labels={3:{'dof': ['u'], 'name': 'u_train'}})
|
||||
k_test = LabelTensor(torch.tensor(data['k_test'], dtype=torch.float).unsqueeze(-1),
|
||||
labels={3:{'dof': ['u0'], 'name': 'k_test'}})
|
||||
u_test= LabelTensor(torch.tensor(data['u_test'], dtype=torch.float).unsqueeze(-1),
|
||||
labels={3:{'dof': ['u'], 'name': 'u_test'}})
|
||||
x = torch.tensor(data['x'], dtype=torch.float)[0]
|
||||
y = torch.tensor(data['y'], dtype=torch.float)[0]
|
||||
|
||||
|
||||
# Let's visualize some data
|
||||
|
||||
# In[3]:
|
||||
|
||||
|
||||
plt.subplot(1, 2, 1)
|
||||
plt.title('permeability')
|
||||
plt.imshow(k_train.squeeze(-1).tensor[0])
|
||||
plt.subplot(1, 2, 2)
|
||||
plt.title('field solution')
|
||||
plt.imshow(u_train.squeeze(-1)[0])
|
||||
plt.show()
|
||||
|
||||
|
||||
# We now create the neural operator class. It is a very simple class, inheriting from `AbstractProblem`.
|
||||
|
||||
# In[4]:
|
||||
|
||||
|
||||
class NeuralOperatorSolver(AbstractProblem):
|
||||
input_variables = k_train.full_labels[3]['dof']
|
||||
output_variables = u_train.full_labels[3]['dof']
|
||||
conditions = {'data' : Condition(input=k_train,
|
||||
target=u_train)}
|
||||
# make problem
|
||||
problem = NeuralOperatorSolver()
|
||||
|
||||
|
||||
# ## Solving the problem with a FeedForward Neural Network
|
||||
#
|
||||
# We will first solve the problem using a Feedforward neural network. We will use the `SupervisedSolver` for solving the problem, since we are training using supervised learning.
|
||||
|
||||
# In[5]:
|
||||
|
||||
|
||||
# make model
|
||||
model = FeedForward(input_dimensions=1, output_dimensions=1)
|
||||
|
||||
|
||||
# make solver
|
||||
solver = SupervisedSolver(problem=problem, model=model)
|
||||
|
||||
# make the trainer and train
|
||||
trainer = Trainer(solver=solver, max_epochs=10, accelerator='cpu', enable_model_summary=False, batch_size=10,
|
||||
# We train on CPU and avoid model summary at the beginning of training (optional)
|
||||
train_size=1.0,
|
||||
val_size=0.0,
|
||||
test_size=0.0)
|
||||
trainer.train()
|
||||
|
||||
|
||||
# The final loss is pretty high... We can calculate the error by importing `LpLoss`.
|
||||
|
||||
# In[6]:
|
||||
|
||||
|
||||
from pina.loss import LpLoss
|
||||
|
||||
# make the metric
|
||||
metric_err = LpLoss(relative=True)
|
||||
|
||||
model = solver.model
|
||||
err = float(metric_err(u_train.squeeze(-1), model(k_train).squeeze(-1)).mean())*100
|
||||
print(f'Final error training {err:.2f}%')
|
||||
|
||||
err = float(metric_err(u_test.squeeze(-1), model(k_test).squeeze(-1)).mean())*100
|
||||
print(f'Final error testing {err:.2f}%')
|
||||
|
||||
|
||||
# ## Solving the problem with a Fourier Neural Operator (FNO)
|
||||
#
|
||||
# We will now move to solve the problem using a FNO. Since we are learning operator this approach is better suited, as we shall see.
|
||||
|
||||
# In[7]:
|
||||
|
||||
|
||||
# make model
|
||||
lifting_net = torch.nn.Linear(1, 24)
|
||||
projecting_net = torch.nn.Linear(24, 1)
|
||||
model = FNO(lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
n_modes=8,
|
||||
dimensions=2,
|
||||
inner_size=24,
|
||||
padding=8)
|
||||
|
||||
|
||||
# make solver
|
||||
solver = SupervisedSolver(problem=problem, model=model)
|
||||
|
||||
# make the trainer and train
|
||||
trainer = Trainer(solver=solver, max_epochs=10, accelerator='cpu', enable_model_summary=False, # We train on CPU and avoid model summary at the beginning of training (optional)
|
||||
batch_size=10,
|
||||
train_size=1.0,
|
||||
val_size=0.0,
|
||||
test_size=0.0)
|
||||
trainer.train()
|
||||
|
||||
|
||||
# We can clearly see that the final loss is lower. Let's see in testing.. Notice that the number of parameters is way higher than a `FeedForward` network. We suggest to use GPU or TPU for a speed up in training, when many data samples are used.
|
||||
|
||||
# In[8]:
|
||||
|
||||
|
||||
model = solver.model
|
||||
|
||||
err = float(metric_err(u_train.squeeze(-1), model(k_train).squeeze(-1)).mean())*100
|
||||
print(f'Final error training {err:.2f}%')
|
||||
|
||||
err = float(metric_err(u_test.squeeze(-1), model(k_test).squeeze(-1)).mean())*100
|
||||
print(f'Final error testing {err:.2f}%')
|
||||
|
||||
|
||||
# As we can see the loss is way lower!
|
||||
|
||||
# ## What's next?
|
||||
#
|
||||
# We have made a very simple example on how to use the `FNO` for learning neural operator. Currently in **PINA** we implement 1D/2D/3D cases. We suggest to extend the tutorial using more complex problems and train for longer, to see the full potential of neural operators.
|
||||
Reference in New Issue
Block a user