Refactoring solvers (#541)
* Refactoring solvers * Simplify logic compile * Improve and update doc * Create SupervisedSolverInterface * Specialize SupervisedSolver and ReducedOrderModelSolver * Create EnsembleSolverInterface + EnsembleSupervisedSolver * Create tests ensemble solvers * formatter * codacy * fix issues + speedup test
This commit is contained in:
11
pina/solver/ensemble_solver/__init__.py
Normal file
11
pina/solver/ensemble_solver/__init__.py
Normal file
@@ -0,0 +1,11 @@
|
||||
"""Module for the Ensemble solver classes."""
|
||||
|
||||
__all__ = [
|
||||
"DeepEnsembleSolverInterface",
|
||||
"DeepEnsembleSupervisedSolver",
|
||||
"DeepEnsemblePINN",
|
||||
]
|
||||
|
||||
from .ensemble_solver_interface import DeepEnsembleSolverInterface
|
||||
from .ensemble_supervised import DeepEnsembleSupervisedSolver
|
||||
from .ensemble_pinn import DeepEnsemblePINN
|
||||
170
pina/solver/ensemble_solver/ensemble_pinn.py
Normal file
170
pina/solver/ensemble_solver/ensemble_pinn.py
Normal file
@@ -0,0 +1,170 @@
|
||||
"""Module for the DeepEnsemble physics solver."""
|
||||
|
||||
import torch
|
||||
|
||||
from .ensemble_solver_interface import DeepEnsembleSolverInterface
|
||||
from ..physics_informed_solver import PINNInterface
|
||||
from ...problem import InverseProblem
|
||||
|
||||
|
||||
class DeepEnsemblePINN(PINNInterface, DeepEnsembleSolverInterface):
|
||||
r"""
|
||||
Deep Ensemble Physics Informed Solver class. This class implements a
|
||||
Deep Ensemble for Physics Informed Neural Networks using user
|
||||
specified ``model``s to solve a specific ``problem``.
|
||||
|
||||
An ensemble model is constructed by combining multiple models that solve
|
||||
the same type of problem. Mathematically, this creates an implicit
|
||||
distribution :math:`p(\mathbf{u} \mid \mathbf{s})` over the possible
|
||||
outputs :math:`\mathbf{u}`, given the original input :math:`\mathbf{s}`.
|
||||
The models :math:`\mathcal{M}_{i\in (1,\dots,r)}` in
|
||||
the ensemble work collaboratively to capture different
|
||||
aspects of the data or task, with each model contributing a distinct
|
||||
prediction :math:`\mathbf{y}_{i}=\mathcal{M}_i(\mathbf{u} \mid \mathbf{s})`.
|
||||
By aggregating these predictions, the ensemble
|
||||
model can achieve greater robustness and accuracy compared to individual
|
||||
models, leveraging the diversity of the models to reduce overfitting and
|
||||
improve generalization. Furthemore, statistical metrics can
|
||||
be computed, e.g. the ensemble mean and variance:
|
||||
|
||||
.. math::
|
||||
\mathbf{\mu} = \frac{1}{N}\sum_{i=1}^r \mathbf{y}_{i}
|
||||
|
||||
.. math::
|
||||
\mathbf{\sigma^2} = \frac{1}{N}\sum_{i=1}^r
|
||||
(\mathbf{y}_{i} - \mathbf{\mu})^2
|
||||
|
||||
During training the PINN loss is minimized by each ensemble model:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^4
|
||||
\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) +
|
||||
\frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i)),
|
||||
|
||||
for the differential system:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{cases}
|
||||
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
||||
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
||||
\mathbf{x}\in\partial\Omega
|
||||
\end{cases}
|
||||
|
||||
:math:`\mathcal{L}` indicates a specific loss function, typically the MSE:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}(v) = \| v \|^2_2.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Zou, Z., Wang, Z., & Karniadakis, G. E. (2025).
|
||||
*Learning and discovering multiple solutions using physics-informed
|
||||
neural networks with random initialization and deep ensemble*.
|
||||
DOI: `arXiv:2503.06320 <https://arxiv.org/abs/2503.06320>`_.
|
||||
|
||||
.. warning::
|
||||
This solver does not work with inverse problem. Hence in the ``problem``
|
||||
definition must not inherit from
|
||||
:class:`~pina.problem.inverse_problem.InverseProblem`.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
models,
|
||||
loss=None,
|
||||
optimizers=None,
|
||||
schedulers=None,
|
||||
weighting=None,
|
||||
ensemble_dim=0,
|
||||
):
|
||||
"""
|
||||
Initialization of the :class:`DeepEnsemblePINN` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
:param torch.nn.Module models: The neural network models to be used.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If ``None``, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is ``None``.
|
||||
:param Optimizer optimizer: The optimizer to be used.
|
||||
If ``None``, the :class:`torch.optim.Adam` optimizer is used.
|
||||
Default is ``None``.
|
||||
:param Scheduler scheduler: Learning rate scheduler.
|
||||
If ``None``, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If ``None``, no weighting schema is used. Default is ``None``.
|
||||
:param int ensemble_dim: The dimension along which the ensemble
|
||||
outputs are stacked. Default is 0.
|
||||
:raises NotImplementedError: If an inverse problem is passed.
|
||||
"""
|
||||
if isinstance(problem, InverseProblem):
|
||||
raise NotImplementedError(
|
||||
"DeepEnsemblePINN can not be used to solve inverse problems."
|
||||
)
|
||||
super().__init__(
|
||||
problem=problem,
|
||||
models=models,
|
||||
loss=loss,
|
||||
optimizers=optimizers,
|
||||
schedulers=schedulers,
|
||||
weighting=weighting,
|
||||
ensemble_dim=ensemble_dim,
|
||||
)
|
||||
|
||||
def loss_data(self, input, target):
|
||||
"""
|
||||
Compute the data loss for the ensemble PINN solver by evaluating
|
||||
the loss between the network's output and the true solution for each
|
||||
model. This method should not be overridden, if not intentionally.
|
||||
|
||||
:param input: The input to the neural network.
|
||||
:type input: LabelTensor | torch.Tensor | Graph | Data
|
||||
:param target: The target to compare with the network's output.
|
||||
:type target: LabelTensor | torch.Tensor | Graph | Data
|
||||
:return: The supervised loss, averaged over the number of observations.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
predictions = self.forward(input)
|
||||
loss = sum(
|
||||
self._loss_fn(predictions[idx], target)
|
||||
for idx in range(self.num_ensemble)
|
||||
)
|
||||
return loss / self.num_ensemble
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the ensemble PINN solver by evaluating
|
||||
the loss between the network's output and the true solution for each
|
||||
model. This method should not be overridden, if not intentionally.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The computed physics loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
return self._residual_loss(samples, equation)
|
||||
|
||||
def _residual_loss(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the physics-informed solver based on the
|
||||
provided samples and equation. This method should never be overridden
|
||||
by the user, if not intentionally,
|
||||
since it is used internally to compute validation loss. It overrides the
|
||||
:obj:`~pina.solver.physics_informed_solver.PINNInterface._residual_loss`
|
||||
method.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The residual loss.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
loss = 0
|
||||
predictions = self.forward(samples)
|
||||
for idx in range(self.num_ensemble):
|
||||
residuals = equation.residual(samples, predictions[idx])
|
||||
target = torch.zeros_like(residuals, requires_grad=True)
|
||||
loss = loss + self._loss_fn(residuals, target)
|
||||
return loss / self.num_ensemble
|
||||
152
pina/solver/ensemble_solver/ensemble_solver_interface.py
Normal file
152
pina/solver/ensemble_solver/ensemble_solver_interface.py
Normal file
@@ -0,0 +1,152 @@
|
||||
"""Module for the DeepEnsemble solver interface."""
|
||||
|
||||
import torch
|
||||
from ..solver import MultiSolverInterface
|
||||
from ...utils import check_consistency
|
||||
|
||||
|
||||
class DeepEnsembleSolverInterface(MultiSolverInterface):
|
||||
r"""
|
||||
A class for handling ensemble models in a multi-solver training framework.
|
||||
It allows for manual optimization, as well as the ability to train,
|
||||
validate, and test multiple models as part of an ensemble.
|
||||
The ensemble dimension can be customized to control how outputs are stacked.
|
||||
|
||||
By default, it is compatible with problems defined by
|
||||
:class:`~pina.problem.abstract_problem.AbstractProblem`,
|
||||
and users can choose the problem type the solver is meant to address.
|
||||
|
||||
An ensemble model is constructed by combining multiple models that solve
|
||||
the same type of problem. Mathematically, this creates an implicit
|
||||
distribution :math:`p(\mathbf{u} \mid \mathbf{s})` over the possible
|
||||
outputs :math:`\mathbf{u}`, given the original input :math:`\mathbf{s}`.
|
||||
The models :math:`\mathcal{M}_{i\in (1,\dots,r)}` in
|
||||
the ensemble work collaboratively to capture different
|
||||
aspects of the data or task, with each model contributing a distinct
|
||||
prediction :math:`\mathbf{y}_{i}=\mathcal{M}_i(\mathbf{u} \mid \mathbf{s})`.
|
||||
By aggregating these predictions, the ensemble
|
||||
model can achieve greater robustness and accuracy compared to individual
|
||||
models, leveraging the diversity of the models to reduce overfitting and
|
||||
improve generalization. Furthemore, statistical metrics can
|
||||
be computed, e.g. the ensemble mean and variance:
|
||||
|
||||
.. math::
|
||||
\mathbf{\mu} = \frac{1}{N}\sum_{i=1}^r \mathbf{y}_{i}
|
||||
|
||||
.. math::
|
||||
\mathbf{\sigma^2} = \frac{1}{N}\sum_{i=1}^r
|
||||
(\mathbf{y}_{i} - \mathbf{\mu})^2
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Lakshminarayanan, B., Pritzel, A., & Blundell,
|
||||
C. (2017). *Simple and scalable predictive uncertainty estimation
|
||||
using deep ensembles*. Advances in neural information
|
||||
processing systems, 30.
|
||||
DOI: `arXiv:1612.01474 <https://arxiv.org/abs/1612.01474>`_.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
models,
|
||||
optimizers=None,
|
||||
schedulers=None,
|
||||
weighting=None,
|
||||
use_lt=True,
|
||||
ensemble_dim=0,
|
||||
):
|
||||
"""
|
||||
Initialization of the :class:`DeepEnsembleSolverInterface` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
:param torch.nn.Module models: The neural network models to be used.
|
||||
:param Optimizer optimizer: The optimizer to be used.
|
||||
If ``None``, the :class:`torch.optim.Adam` optimizer is used.
|
||||
Default is ``None``.
|
||||
:param Scheduler scheduler: Learning rate scheduler.
|
||||
If ``None``, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If ``None``, no weighting schema is used. Default is ``None``.
|
||||
:param bool use_lt: If ``True``, the solver uses LabelTensors as input.
|
||||
Default is ``True``.
|
||||
:param int ensemble_dim: The dimension along which the ensemble
|
||||
outputs are stacked. Default is 0.
|
||||
"""
|
||||
super().__init__(
|
||||
problem, models, optimizers, schedulers, weighting, use_lt
|
||||
)
|
||||
# check consistency
|
||||
check_consistency(ensemble_dim, int)
|
||||
self._ensemble_dim = ensemble_dim
|
||||
|
||||
def forward(self, x, ensemble_idx=None):
|
||||
"""
|
||||
Forward pass through the ensemble models. If an `ensemble_idx` is
|
||||
provided, it returns the output of the specific model
|
||||
corresponding to that index. If no index is given, it stacks the outputs
|
||||
of all models along the ensemble dimension.
|
||||
|
||||
:param LabelTensor x: The input tensor to the models.
|
||||
:param int ensemble_idx: Optional index to select a specific
|
||||
model from the ensemble. If ``None`` results for all models are
|
||||
stacked in ``ensemble_dim`` dimension. Default is ``None``.
|
||||
:return: The output of the selected model or the stacked
|
||||
outputs from all models.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
# if an index is passed, return the specific model output for that index
|
||||
if ensemble_idx is not None:
|
||||
return self.models[ensemble_idx].forward(x)
|
||||
# otherwise return the stacked output
|
||||
return torch.stack(
|
||||
[self.forward(x, idx) for idx in range(self.num_ensemble)],
|
||||
dim=self.ensemble_dim,
|
||||
)
|
||||
|
||||
def training_step(self, batch):
|
||||
"""
|
||||
Training step for the solver, overridden for manual optimization.
|
||||
This method performs a forward pass, calculates the loss, and applies
|
||||
manual backward propagation and optimization steps for each model in
|
||||
the ensemble.
|
||||
|
||||
:param list[tuple[str, dict]] batch: A batch of training data.
|
||||
Each element is a tuple containing a condition name and a
|
||||
dictionary of points.
|
||||
:return: The aggregated loss after the training step.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
# zero grad for optimizer
|
||||
for opt in self.optimizers:
|
||||
opt.instance.zero_grad()
|
||||
# perform forward passes and aggregate losses
|
||||
loss = super().training_step(batch)
|
||||
# perform backpropagation
|
||||
self.manual_backward(loss)
|
||||
# optimize
|
||||
for opt, sched in zip(self.optimizers, self.schedulers):
|
||||
opt.instance.step()
|
||||
sched.instance.step()
|
||||
return loss
|
||||
|
||||
@property
|
||||
def ensemble_dim(self):
|
||||
"""
|
||||
The dimension along which the ensemble outputs are stacked.
|
||||
|
||||
:return: The ensemble dimension.
|
||||
:rtype: int
|
||||
"""
|
||||
return self._ensemble_dim
|
||||
|
||||
@property
|
||||
def num_ensemble(self):
|
||||
"""
|
||||
The number of models in the ensemble.
|
||||
|
||||
:return: The number of models in the ensemble.
|
||||
:rtype: int
|
||||
"""
|
||||
return len(self.models)
|
||||
122
pina/solver/ensemble_solver/ensemble_supervised.py
Normal file
122
pina/solver/ensemble_solver/ensemble_supervised.py
Normal file
@@ -0,0 +1,122 @@
|
||||
"""Module for the DeepEnsemble supervised solver."""
|
||||
|
||||
from .ensemble_solver_interface import DeepEnsembleSolverInterface
|
||||
from ..supervised_solver import SupervisedSolverInterface
|
||||
|
||||
|
||||
class DeepEnsembleSupervisedSolver(
|
||||
SupervisedSolverInterface, DeepEnsembleSolverInterface
|
||||
):
|
||||
r"""
|
||||
Deep Ensemble Supervised Solver class. This class implements a
|
||||
Deep Ensemble Supervised Solver using user specified ``model``s to solve
|
||||
a specific ``problem``.
|
||||
|
||||
An ensemble model is constructed by combining multiple models that solve
|
||||
the same type of problem. Mathematically, this creates an implicit
|
||||
distribution :math:`p(\mathbf{u} \mid \mathbf{s})` over the possible
|
||||
outputs :math:`\mathbf{u}`, given the original input :math:`\mathbf{s}`.
|
||||
The models :math:`\mathcal{M}_{i\in (1,\dots,r)}` in
|
||||
the ensemble work collaboratively to capture different
|
||||
aspects of the data or task, with each model contributing a distinct
|
||||
prediction :math:`\mathbf{y}_{i}=\mathcal{M}_i(\mathbf{u} \mid \mathbf{s})`.
|
||||
By aggregating these predictions, the ensemble
|
||||
model can achieve greater robustness and accuracy compared to individual
|
||||
models, leveraging the diversity of the models to reduce overfitting and
|
||||
improve generalization. Furthemore, statistical metrics can
|
||||
be computed, e.g. the ensemble mean and variance:
|
||||
|
||||
.. math::
|
||||
\mathbf{\mu} = \frac{1}{N}\sum_{i=1}^r \mathbf{y}_{i}
|
||||
|
||||
.. math::
|
||||
\mathbf{\sigma^2} = \frac{1}{N}\sum_{i=1}^r
|
||||
(\mathbf{y}_{i} - \mathbf{\mu})^2
|
||||
|
||||
During training the supervised loss is minimized by each ensemble model:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(\mathbf{u}_i - \mathcal{M}_{j}(\mathbf{s}_i)),
|
||||
\quad j \in (1,\dots,N_{ensemble})
|
||||
|
||||
where :math:`\mathcal{L}` is a specific loss function, typically the MSE:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}(v) = \| v \|^2_2.
|
||||
|
||||
In this context, :math:`\mathbf{u}_i` and :math:`\mathbf{s}_i` indicates
|
||||
the will to approximate multiple (discretised) functions given multiple
|
||||
(discretised) input functions.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Lakshminarayanan, B., Pritzel, A., & Blundell,
|
||||
C. (2017). *Simple and scalable predictive uncertainty estimation
|
||||
using deep ensembles*. Advances in neural information
|
||||
processing systems, 30.
|
||||
DOI: `arXiv:1612.01474 <https://arxiv.org/abs/1612.01474>`_.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
models,
|
||||
loss=None,
|
||||
optimizers=None,
|
||||
schedulers=None,
|
||||
weighting=None,
|
||||
use_lt=False,
|
||||
ensemble_dim=0,
|
||||
):
|
||||
"""
|
||||
Initialization of the :class:`DeepEnsembleSupervisedSolver` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
:param torch.nn.Module models: The neural network models to be used.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If ``None``, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is ``None``.
|
||||
:param Optimizer optimizer: The optimizer to be used.
|
||||
If ``None``, the :class:`torch.optim.Adam` optimizer is used.
|
||||
Default is ``None``.
|
||||
:param Scheduler scheduler: Learning rate scheduler.
|
||||
If ``None``, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If ``None``, no weighting schema is used. Default is ``None``.
|
||||
:param bool use_lt: If ``True``, the solver uses LabelTensors as input.
|
||||
Default is ``True``.
|
||||
:param int ensemble_dim: The dimension along which the ensemble
|
||||
outputs are stacked. Default is 0.
|
||||
"""
|
||||
super().__init__(
|
||||
problem=problem,
|
||||
models=models,
|
||||
loss=loss,
|
||||
optimizers=optimizers,
|
||||
schedulers=schedulers,
|
||||
weighting=weighting,
|
||||
use_lt=use_lt,
|
||||
ensemble_dim=ensemble_dim,
|
||||
)
|
||||
|
||||
def loss_data(self, input, target):
|
||||
"""
|
||||
Compute the data loss for the EnsembleSupervisedSolver by evaluating
|
||||
the loss between the network's output and the true solution for each
|
||||
model. This method should not be overridden, if not intentionally.
|
||||
|
||||
:param input: The input to the neural network.
|
||||
:type input: LabelTensor | torch.Tensor | Graph | Data
|
||||
:param target: The target to compare with the network's output.
|
||||
:type target: LabelTensor | torch.Tensor | Graph | Data
|
||||
:return: The supervised loss, averaged over the number of observations.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
predictions = self.forward(input)
|
||||
loss = sum(
|
||||
self._loss_fn(predictions[idx], target)
|
||||
for idx in range(self.num_ensemble)
|
||||
)
|
||||
return loss / self.num_ensemble
|
||||
Reference in New Issue
Block a user