Refactoring solvers (#541)
* Refactoring solvers * Simplify logic compile * Improve and update doc * Create SupervisedSolverInterface * Specialize SupervisedSolver and ReducedOrderModelSolver * Create EnsembleSolverInterface + EnsembleSupervisedSolver * Create tests ensemble solvers * formatter * codacy * fix issues + speedup test
This commit is contained in:
170
pina/solver/ensemble_solver/ensemble_pinn.py
Normal file
170
pina/solver/ensemble_solver/ensemble_pinn.py
Normal file
@@ -0,0 +1,170 @@
|
||||
"""Module for the DeepEnsemble physics solver."""
|
||||
|
||||
import torch
|
||||
|
||||
from .ensemble_solver_interface import DeepEnsembleSolverInterface
|
||||
from ..physics_informed_solver import PINNInterface
|
||||
from ...problem import InverseProblem
|
||||
|
||||
|
||||
class DeepEnsemblePINN(PINNInterface, DeepEnsembleSolverInterface):
|
||||
r"""
|
||||
Deep Ensemble Physics Informed Solver class. This class implements a
|
||||
Deep Ensemble for Physics Informed Neural Networks using user
|
||||
specified ``model``s to solve a specific ``problem``.
|
||||
|
||||
An ensemble model is constructed by combining multiple models that solve
|
||||
the same type of problem. Mathematically, this creates an implicit
|
||||
distribution :math:`p(\mathbf{u} \mid \mathbf{s})` over the possible
|
||||
outputs :math:`\mathbf{u}`, given the original input :math:`\mathbf{s}`.
|
||||
The models :math:`\mathcal{M}_{i\in (1,\dots,r)}` in
|
||||
the ensemble work collaboratively to capture different
|
||||
aspects of the data or task, with each model contributing a distinct
|
||||
prediction :math:`\mathbf{y}_{i}=\mathcal{M}_i(\mathbf{u} \mid \mathbf{s})`.
|
||||
By aggregating these predictions, the ensemble
|
||||
model can achieve greater robustness and accuracy compared to individual
|
||||
models, leveraging the diversity of the models to reduce overfitting and
|
||||
improve generalization. Furthemore, statistical metrics can
|
||||
be computed, e.g. the ensemble mean and variance:
|
||||
|
||||
.. math::
|
||||
\mathbf{\mu} = \frac{1}{N}\sum_{i=1}^r \mathbf{y}_{i}
|
||||
|
||||
.. math::
|
||||
\mathbf{\sigma^2} = \frac{1}{N}\sum_{i=1}^r
|
||||
(\mathbf{y}_{i} - \mathbf{\mu})^2
|
||||
|
||||
During training the PINN loss is minimized by each ensemble model:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}_{\rm{problem}} = \frac{1}{N}\sum_{i=1}^4
|
||||
\mathcal{L}(\mathcal{A}[\mathbf{u}](\mathbf{x}_i)) +
|
||||
\frac{1}{N}\sum_{i=1}^N
|
||||
\mathcal{L}(\mathcal{B}[\mathbf{u}](\mathbf{x}_i)),
|
||||
|
||||
for the differential system:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{cases}
|
||||
\mathcal{A}[\mathbf{u}](\mathbf{x})=0\quad,\mathbf{x}\in\Omega\\
|
||||
\mathcal{B}[\mathbf{u}](\mathbf{x})=0\quad,
|
||||
\mathbf{x}\in\partial\Omega
|
||||
\end{cases}
|
||||
|
||||
:math:`\mathcal{L}` indicates a specific loss function, typically the MSE:
|
||||
|
||||
.. math::
|
||||
\mathcal{L}(v) = \| v \|^2_2.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Zou, Z., Wang, Z., & Karniadakis, G. E. (2025).
|
||||
*Learning and discovering multiple solutions using physics-informed
|
||||
neural networks with random initialization and deep ensemble*.
|
||||
DOI: `arXiv:2503.06320 <https://arxiv.org/abs/2503.06320>`_.
|
||||
|
||||
.. warning::
|
||||
This solver does not work with inverse problem. Hence in the ``problem``
|
||||
definition must not inherit from
|
||||
:class:`~pina.problem.inverse_problem.InverseProblem`.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
models,
|
||||
loss=None,
|
||||
optimizers=None,
|
||||
schedulers=None,
|
||||
weighting=None,
|
||||
ensemble_dim=0,
|
||||
):
|
||||
"""
|
||||
Initialization of the :class:`DeepEnsemblePINN` class.
|
||||
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
:param torch.nn.Module models: The neural network models to be used.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If ``None``, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is ``None``.
|
||||
:param Optimizer optimizer: The optimizer to be used.
|
||||
If ``None``, the :class:`torch.optim.Adam` optimizer is used.
|
||||
Default is ``None``.
|
||||
:param Scheduler scheduler: Learning rate scheduler.
|
||||
If ``None``, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If ``None``, no weighting schema is used. Default is ``None``.
|
||||
:param int ensemble_dim: The dimension along which the ensemble
|
||||
outputs are stacked. Default is 0.
|
||||
:raises NotImplementedError: If an inverse problem is passed.
|
||||
"""
|
||||
if isinstance(problem, InverseProblem):
|
||||
raise NotImplementedError(
|
||||
"DeepEnsemblePINN can not be used to solve inverse problems."
|
||||
)
|
||||
super().__init__(
|
||||
problem=problem,
|
||||
models=models,
|
||||
loss=loss,
|
||||
optimizers=optimizers,
|
||||
schedulers=schedulers,
|
||||
weighting=weighting,
|
||||
ensemble_dim=ensemble_dim,
|
||||
)
|
||||
|
||||
def loss_data(self, input, target):
|
||||
"""
|
||||
Compute the data loss for the ensemble PINN solver by evaluating
|
||||
the loss between the network's output and the true solution for each
|
||||
model. This method should not be overridden, if not intentionally.
|
||||
|
||||
:param input: The input to the neural network.
|
||||
:type input: LabelTensor | torch.Tensor | Graph | Data
|
||||
:param target: The target to compare with the network's output.
|
||||
:type target: LabelTensor | torch.Tensor | Graph | Data
|
||||
:return: The supervised loss, averaged over the number of observations.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
predictions = self.forward(input)
|
||||
loss = sum(
|
||||
self._loss_fn(predictions[idx], target)
|
||||
for idx in range(self.num_ensemble)
|
||||
)
|
||||
return loss / self.num_ensemble
|
||||
|
||||
def loss_phys(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the ensemble PINN solver by evaluating
|
||||
the loss between the network's output and the true solution for each
|
||||
model. This method should not be overridden, if not intentionally.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the physics loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The computed physics loss.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
return self._residual_loss(samples, equation)
|
||||
|
||||
def _residual_loss(self, samples, equation):
|
||||
"""
|
||||
Computes the physics loss for the physics-informed solver based on the
|
||||
provided samples and equation. This method should never be overridden
|
||||
by the user, if not intentionally,
|
||||
since it is used internally to compute validation loss. It overrides the
|
||||
:obj:`~pina.solver.physics_informed_solver.PINNInterface._residual_loss`
|
||||
method.
|
||||
|
||||
:param LabelTensor samples: The samples to evaluate the loss.
|
||||
:param EquationInterface equation: The governing equation.
|
||||
:return: The residual loss.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
loss = 0
|
||||
predictions = self.forward(samples)
|
||||
for idx in range(self.num_ensemble):
|
||||
residuals = equation.residual(samples, predictions[idx])
|
||||
target = torch.zeros_like(residuals, requires_grad=True)
|
||||
loss = loss + self._loss_fn(residuals, target)
|
||||
return loss / self.num_ensemble
|
||||
Reference in New Issue
Block a user