Refactoring solvers (#541)
* Refactoring solvers * Simplify logic compile * Improve and update doc * Create SupervisedSolverInterface * Specialize SupervisedSolver and ReducedOrderModelSolver * Create EnsembleSolverInterface + EnsembleSupervisedSolver * Create tests ensemble solvers * formatter * codacy * fix issues + speedup test
This commit is contained in:
@@ -83,15 +83,15 @@ class CausalPINN(PINN):
|
||||
:class:`~pina.problem.time_dependent_problem.TimeDependentProblem`.
|
||||
:param torch.nn.Module model: The neural network model to be used.
|
||||
:param Optimizer optimizer: The optimizer to be used.
|
||||
If `None`, the :class:`torch.optim.Adam` optimizer is used.
|
||||
If ``None``, the :class:`torch.optim.Adam` optimizer is used.
|
||||
Default is ``None``.
|
||||
:param torch.optim.LRScheduler scheduler: Learning rate scheduler.
|
||||
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
If ``None``, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If `None`, no weighting schema is used. Default is ``None``.
|
||||
If ``None``, no weighting schema is used. Default is ``None``.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If `None`, the :class:`torch.nn.MSELoss` loss is used.
|
||||
If ``None``, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is `None`.
|
||||
:param float eps: The exponential decay parameter. Default is ``100``.
|
||||
:raises ValueError: If the problem is not a TimeDependentProblem.
|
||||
@@ -134,7 +134,7 @@ class CausalPINN(PINN):
|
||||
chunk.labels = labels
|
||||
# classical PINN loss
|
||||
residual = self.compute_residual(samples=chunk, equation=equation)
|
||||
loss_val = self.loss(
|
||||
loss_val = self._loss_fn(
|
||||
torch.zeros_like(residual, requires_grad=True), residual
|
||||
)
|
||||
time_loss.append(loss_val)
|
||||
|
||||
Reference in New Issue
Block a user