Solvers for multiple models (#133)
* Solvers for multiple models - Implementing the possibility to add multiple models for solvers (e.g. GAN) - Implementing GAROM solver, see https://arxiv.org/abs/2305.15881 - Implementing tests for GAROM solver (cpu only) - Fixing docs PINNs - Creating a solver directory, for consistency in the package --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-040.eduroam.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
6c8635c316
commit
701046661f
261
pina/solvers/garom.py
Normal file
261
pina/solvers/garom.py
Normal file
@@ -0,0 +1,261 @@
|
||||
""" Module for PINN """
|
||||
import torch
|
||||
try:
|
||||
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
|
||||
except ImportError:
|
||||
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0
|
||||
|
||||
from torch.optim.lr_scheduler import ConstantLR
|
||||
from .solver import SolverInterface
|
||||
from ..utils import check_consistency
|
||||
from ..loss import LossInterface, LpLoss
|
||||
from torch.nn.modules.loss import _Loss
|
||||
|
||||
|
||||
class GAROM(SolverInterface):
|
||||
"""
|
||||
GAROM solver class. This class implements Generative Adversarial
|
||||
Reduced Order Model solver, using user specified ``models`` to solve
|
||||
a specific order reduction``problem``.
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Coscia, D., Demo, N., & Rozza, G. (2023).
|
||||
Generative Adversarial Reduced Order Modelling.
|
||||
arXiv preprint arXiv:2305.15881.
|
||||
<https://doi.org/10.48550/arXiv.2305.15881>`_.
|
||||
"""
|
||||
def __init__(self,
|
||||
problem,
|
||||
generator,
|
||||
discriminator,
|
||||
extra_features=None,
|
||||
loss = None,
|
||||
optimizer_generator=torch.optim.Adam,
|
||||
optimizer_generator_kwargs={'lr' : 0.001},
|
||||
optimizer_discriminator=torch.optim.Adam,
|
||||
optimizer_discriminator_kwargs={'lr' : 0.001},
|
||||
scheduler_generator=ConstantLR,
|
||||
scheduler_generator_kwargs={"factor": 1, "total_iters": 0},
|
||||
scheduler_discriminator=ConstantLR,
|
||||
scheduler_discriminator_kwargs={"factor": 1, "total_iters": 0},
|
||||
gamma = 0.3,
|
||||
lambda_k = 0.001,
|
||||
regularizer = False,
|
||||
):
|
||||
"""
|
||||
:param AbstractProblem problem: The formualation of the problem.
|
||||
:param torch.nn.Module generator: The neural network model to use
|
||||
for the generator.
|
||||
:param torch.nn.Module discriminator: The neural network model to use
|
||||
for the discriminator.
|
||||
:param torch.nn.Module extra_features: The additional input
|
||||
features to use as augmented input. It should either be a
|
||||
list of torch.nn.Module, or a dictionary. If a list it is
|
||||
passed the extra features are passed to both network. If a
|
||||
dictionary is passed, the keys must be ``generator`` and
|
||||
``discriminator`` and the values a list of torch.nn.Module
|
||||
extra features for each.
|
||||
:param torch.nn.Module loss: The loss function used as minimizer,
|
||||
default ``None``. If ``loss`` is ``None`` the defualt
|
||||
``LpLoss(p=1)`` is used, as in the original paper.
|
||||
:param torch.optim.Optimizer optimizer_generator: The neural
|
||||
network optimizer to use for the generator network
|
||||
, default is `torch.optim.Adam`.
|
||||
:param dict optimizer_generator_kwargs: Optimizer constructor keyword
|
||||
args. for the generator.
|
||||
:param torch.optim.Optimizer optimizer_discriminator: The neural
|
||||
network optimizer to use for the discriminator network
|
||||
, default is `torch.optim.Adam`.
|
||||
:param dict optimizer_discriminator_kwargs: Optimizer constructor keyword
|
||||
args. for the discriminator.
|
||||
:param torch.optim.LRScheduler scheduler_generator: Learning
|
||||
rate scheduler for the generator.
|
||||
:param dict scheduler_generator_kwargs: LR scheduler constructor keyword args.
|
||||
:param torch.optim.LRScheduler scheduler_discriminator: Learning
|
||||
rate scheduler for the discriminator.
|
||||
:param dict scheduler_discriminator_kwargs: LR scheduler constructor keyword args.
|
||||
:param gamma: Ratio of expected loss for generator and discriminator, defaults to 0.3.
|
||||
:type gamma: float, optional
|
||||
:param lambda_k: Learning rate for control theory optimization, defaults to 0.001.
|
||||
:type lambda_k: float, optional
|
||||
:param regularizer: Regularization term in the GAROM loss, defaults to False.
|
||||
:type regularizer: bool, optional
|
||||
|
||||
.. warning::
|
||||
The algorithm works only for data-driven model. Hence in the ``problem`` definition
|
||||
the codition must only contain ``input_points`` (e.g. coefficient parameters, time
|
||||
parameters), and ``output_points``.
|
||||
"""
|
||||
|
||||
if isinstance(extra_features, dict):
|
||||
extra_features = [extra_features['generator'], extra_features['discriminator']]
|
||||
|
||||
super().__init__(models=[generator, discriminator],
|
||||
problem=problem,
|
||||
extra_features=extra_features,
|
||||
optimizers=[optimizer_generator, optimizer_discriminator],
|
||||
optimizers_kwargs=[optimizer_generator_kwargs, optimizer_discriminator_kwargs])
|
||||
|
||||
# set automatic optimization for GANs
|
||||
self.automatic_optimization = False
|
||||
|
||||
# set loss
|
||||
if loss is None:
|
||||
loss = LpLoss(p=1)
|
||||
|
||||
# check consistency
|
||||
check_consistency(scheduler_generator, LRScheduler, subclass=True)
|
||||
check_consistency(scheduler_generator_kwargs, dict)
|
||||
check_consistency(scheduler_discriminator, LRScheduler, subclass=True)
|
||||
check_consistency(scheduler_discriminator_kwargs, dict)
|
||||
check_consistency(loss, (LossInterface, _Loss))
|
||||
check_consistency(gamma, float)
|
||||
check_consistency(lambda_k, float)
|
||||
check_consistency(regularizer, bool)
|
||||
|
||||
|
||||
# assign schedulers
|
||||
self._schedulers = [scheduler_generator(self.optimizers[0],
|
||||
**scheduler_generator_kwargs),
|
||||
scheduler_discriminator(self.optimizers[1],
|
||||
**scheduler_discriminator_kwargs)]
|
||||
# loss and writer
|
||||
self._loss = loss
|
||||
|
||||
# began hyperparameters
|
||||
self.k = 0
|
||||
self.gamma = gamma
|
||||
self.lambda_k = lambda_k
|
||||
self.regularizer = float(regularizer)
|
||||
|
||||
def forward(self, x, mc_steps=20, variance=False):
|
||||
|
||||
# sampling
|
||||
field_sample = [self.sample(x) for _ in range(mc_steps)]
|
||||
field_sample = torch.stack(field_sample)
|
||||
|
||||
# extract mean
|
||||
mean = field_sample.mean(dim=0)
|
||||
|
||||
if variance:
|
||||
var = field_sample.var(dim=0)
|
||||
return mean, var
|
||||
|
||||
return mean
|
||||
|
||||
def configure_optimizers(self):
|
||||
"""Optimizer configuration for the GAROM
|
||||
solver.
|
||||
|
||||
:return: The optimizers and the schedulers
|
||||
:rtype: tuple(list, list)
|
||||
"""
|
||||
return self.optimizers, self._schedulers
|
||||
|
||||
def sample(self, x):
|
||||
# sampling
|
||||
return self.generator(x)
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
"""PINN solver training step.
|
||||
|
||||
:param batch: The batch element in the dataloader.
|
||||
:type batch: tuple
|
||||
:param batch_idx: The batch index.
|
||||
:type batch_idx: int
|
||||
:return: The sum of the loss functions.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
|
||||
for condition_name, samples in batch.items():
|
||||
|
||||
if condition_name not in self.problem.conditions:
|
||||
raise RuntimeError('Something wrong happened.')
|
||||
|
||||
condition = self.problem.conditions[condition_name]
|
||||
|
||||
# for data driven mode
|
||||
if hasattr(condition, 'output_points'):
|
||||
|
||||
# get data
|
||||
parameters, input_pts = samples
|
||||
|
||||
# get optimizers
|
||||
opt_gen, opt_disc = self.optimizers
|
||||
|
||||
# ---------------------
|
||||
# Train Discriminator
|
||||
# ---------------------
|
||||
opt_disc.zero_grad()
|
||||
|
||||
# Generate a batch of images
|
||||
gen_imgs = self.generator(parameters)
|
||||
|
||||
# Discriminator pass
|
||||
d_real = self.discriminator([input_pts, parameters])
|
||||
d_fake = self.discriminator([gen_imgs.detach(), parameters])
|
||||
|
||||
# evaluate loss
|
||||
d_loss_real = self._loss(d_real, input_pts)
|
||||
d_loss_fake = self._loss(d_fake, gen_imgs.detach())
|
||||
d_loss = d_loss_real - self.k * d_loss_fake
|
||||
|
||||
# backward step
|
||||
d_loss.backward()
|
||||
opt_disc.step()
|
||||
|
||||
# -----------------
|
||||
# Train Generator
|
||||
# -----------------
|
||||
opt_gen.zero_grad()
|
||||
|
||||
# Generate a batch of images
|
||||
gen_imgs = self.generator(parameters)
|
||||
|
||||
# generator loss
|
||||
r_loss = self._loss(input_pts, gen_imgs)
|
||||
d_fake = self.discriminator([gen_imgs, parameters])
|
||||
g_loss = self._loss(d_fake, gen_imgs) + self.regularizer * r_loss
|
||||
|
||||
# backward step
|
||||
g_loss.backward()
|
||||
opt_gen.step()
|
||||
|
||||
# ----------------
|
||||
# Update weights
|
||||
# ----------------
|
||||
diff = torch.mean(self.gamma * d_loss_real - d_loss_fake)
|
||||
|
||||
# Update weight term for fake samples
|
||||
self.k += self.lambda_k * diff.item()
|
||||
self.k = min(max(self.k, 0), 1) # Constraint to interval [0, 1]
|
||||
|
||||
else:
|
||||
raise NotImplementedError('GAROM works only in data-driven mode.')
|
||||
|
||||
return
|
||||
|
||||
@property
|
||||
def generator(self):
|
||||
return self.models[0]
|
||||
|
||||
@property
|
||||
def discriminator(self):
|
||||
return self.models[1]
|
||||
|
||||
@property
|
||||
def optimizer_generator(self):
|
||||
return self.optimizers[0]
|
||||
|
||||
@property
|
||||
def optimizer_discriminator(self):
|
||||
return self.optimizers[1]
|
||||
|
||||
@property
|
||||
def scheduler_generator(self):
|
||||
return self._schedulers[0]
|
||||
|
||||
@property
|
||||
def scheduler_discriminator(self):
|
||||
return self._schedulers[1]
|
||||
Reference in New Issue
Block a user