Solvers for multiple models (#133)
* Solvers for multiple models - Implementing the possibility to add multiple models for solvers (e.g. GAN) - Implementing GAROM solver, see https://arxiv.org/abs/2305.15881 - Implementing tests for GAROM solver (cpu only) - Fixing docs PINNs - Creating a solver directory, for consistency in the package --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-040.eduroam.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
6c8635c316
commit
701046661f
162
tests/test_solvers/test_garom.py
Normal file
162
tests/test_solvers/test_garom.py
Normal file
@@ -0,0 +1,162 @@
|
||||
import torch
|
||||
|
||||
from pina.problem import AbstractProblem
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.solvers import GAROM
|
||||
from pina.trainer import Trainer
|
||||
import torch.nn as nn
|
||||
import matplotlib.tri as tri
|
||||
|
||||
|
||||
def func(x, mu1, mu2):
|
||||
import torch
|
||||
x_m1 = (x[:, 0] - mu1).pow(2)
|
||||
x_m2 = (x[:, 1] - mu2).pow(2)
|
||||
norm = x[:, 0]**2 + x[:, 1]**2
|
||||
return torch.exp(-(x_m1 + x_m2))
|
||||
|
||||
class ParametricGaussian(AbstractProblem):
|
||||
output_variables = [f'u_{i}' for i in range(900)]
|
||||
|
||||
# params
|
||||
xx = torch.linspace(-1, 1, 20)
|
||||
yy = xx
|
||||
params = LabelTensor(torch.cartesian_prod(xx, yy), labels=['mu1', 'mu2'])
|
||||
|
||||
# define domain
|
||||
x = torch.linspace(-1, 1, 30)
|
||||
domain = torch.cartesian_prod(x, x)
|
||||
triang = tri.Triangulation(domain[:, 0], domain[:, 1])
|
||||
sol = []
|
||||
for p in params:
|
||||
sol.append(func(domain, p[0], p[1]))
|
||||
snapshots = LabelTensor(torch.stack(sol), labels=output_variables)
|
||||
|
||||
# define conditions
|
||||
conditions = {
|
||||
'data': Condition(
|
||||
input_points=params,
|
||||
output_points=snapshots)
|
||||
}
|
||||
|
||||
# simple Generator Network
|
||||
class Generator(nn.Module):
|
||||
def __init__(self, input_dimension, parameters_dimension,
|
||||
noise_dimension, activation=torch.nn.SiLU):
|
||||
super().__init__()
|
||||
|
||||
self._noise_dimension = noise_dimension
|
||||
self._activation = activation
|
||||
|
||||
self.model = torch.nn.Sequential(
|
||||
torch.nn.Linear(6 * self._noise_dimension, input_dimension // 6),
|
||||
self._activation(),
|
||||
torch.nn.Linear(input_dimension // 6, input_dimension // 3),
|
||||
self._activation(),
|
||||
torch.nn.Linear(input_dimension // 3, input_dimension)
|
||||
)
|
||||
self.condition = torch.nn.Sequential(
|
||||
torch.nn.Linear(parameters_dimension, 2 * self._noise_dimension),
|
||||
self._activation(),
|
||||
torch.nn.Linear(2 * self._noise_dimension, 5 * self._noise_dimension)
|
||||
)
|
||||
|
||||
def forward(self, param):
|
||||
# uniform sampling in [-1, 1]
|
||||
z = torch.rand(size=(param.shape[0], self._noise_dimension),
|
||||
device=param.device,
|
||||
dtype=param.dtype,
|
||||
requires_grad=True)
|
||||
z = 2. * z - 1.
|
||||
|
||||
# conditioning by concatenation of mapped parameters
|
||||
input_ = torch.cat((z, self.condition(param)), dim=-1)
|
||||
out = self.model(input_)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
# Simple Discriminator Network
|
||||
class Discriminator(nn.Module):
|
||||
def __init__(self, input_dimension, parameter_dimension,
|
||||
hidden_dimension, activation=torch.nn.ReLU):
|
||||
super().__init__()
|
||||
|
||||
self._activation = activation
|
||||
self.encoding = torch.nn.Sequential(
|
||||
torch.nn.Linear(input_dimension, input_dimension // 3),
|
||||
self._activation(),
|
||||
torch.nn.Linear(input_dimension // 3, input_dimension // 6),
|
||||
self._activation(),
|
||||
torch.nn.Linear(input_dimension // 6, hidden_dimension)
|
||||
)
|
||||
self.decoding = torch.nn.Sequential(
|
||||
torch.nn.Linear(2*hidden_dimension, input_dimension // 6),
|
||||
self._activation(),
|
||||
torch.nn.Linear(input_dimension // 6, input_dimension // 3),
|
||||
self._activation(),
|
||||
torch.nn.Linear(input_dimension // 3, input_dimension),
|
||||
)
|
||||
|
||||
self.condition = torch.nn.Sequential(
|
||||
torch.nn.Linear(parameter_dimension, hidden_dimension // 2),
|
||||
self._activation(),
|
||||
torch.nn.Linear(hidden_dimension // 2, hidden_dimension)
|
||||
)
|
||||
|
||||
def forward(self, data):
|
||||
x, condition = data
|
||||
encoding = self.encoding(x)
|
||||
conditioning = torch.cat((encoding, self.condition(condition)), dim=-1)
|
||||
decoding = self.decoding(conditioning)
|
||||
return decoding
|
||||
|
||||
|
||||
problem = ParametricGaussian()
|
||||
|
||||
def test_constructor():
|
||||
GAROM(problem = problem,
|
||||
generator = Generator(input_dimension=900,
|
||||
parameters_dimension=2,
|
||||
noise_dimension=12),
|
||||
discriminator = Discriminator(input_dimension=900,
|
||||
parameter_dimension=2,
|
||||
hidden_dimension=64)
|
||||
)
|
||||
|
||||
def test_train_cpu():
|
||||
solver = GAROM(problem = problem,
|
||||
generator = Generator(input_dimension=900,
|
||||
parameters_dimension=2,
|
||||
noise_dimension=12),
|
||||
discriminator = Discriminator(input_dimension=900,
|
||||
parameter_dimension=2,
|
||||
hidden_dimension=64)
|
||||
)
|
||||
|
||||
trainer = Trainer(solver=solver, kwargs={'max_epochs' : 4, 'accelerator': 'cpu'})
|
||||
trainer.train()
|
||||
|
||||
def test_sample():
|
||||
solver = GAROM(problem = problem,
|
||||
generator = Generator(input_dimension=900,
|
||||
parameters_dimension=2,
|
||||
noise_dimension=12),
|
||||
discriminator = Discriminator(input_dimension=900,
|
||||
parameter_dimension=2,
|
||||
hidden_dimension=64)
|
||||
)
|
||||
solver.sample(problem.params)
|
||||
assert solver.sample(problem.params).shape == problem.snapshots.shape
|
||||
|
||||
def test_forward():
|
||||
solver = GAROM(problem = problem,
|
||||
generator = Generator(input_dimension=900,
|
||||
parameters_dimension=2,
|
||||
noise_dimension=12),
|
||||
discriminator = Discriminator(input_dimension=900,
|
||||
parameter_dimension=2,
|
||||
hidden_dimension=64)
|
||||
)
|
||||
solver(problem.params, mc_steps=100, variance=True)
|
||||
assert solver(problem.params).shape == problem.snapshots.shape
|
||||
215
tests/test_solvers/test_pinn.py
Normal file
215
tests/test_solvers/test_pinn.py
Normal file
@@ -0,0 +1,215 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.operators import nabla
|
||||
from pina.geometry import CartesianDomain
|
||||
from pina import Condition, LabelTensor, PINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
from pina.plotter import Plotter
|
||||
from pina.loss import LpLoss
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
|
||||
torch.sin(input_.extract(['y'])*torch.pi))
|
||||
nabla_u = nabla(output_.extract(['u']), input_)
|
||||
return nabla_u - force_term
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]], requires_grad=True), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]], requires_grad=True), ['u'])
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'gamma1': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 1}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma2': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': 0}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma3': Condition(
|
||||
location=CartesianDomain({'x': 1, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'gamma4': Condition(
|
||||
location=CartesianDomain({'x': 0, 'y': [0, 1]}),
|
||||
equation=FixedValue(0.0)),
|
||||
'D': Condition(
|
||||
location=CartesianDomain({'x': [0, 1], 'y': [0, 1]}),
|
||||
equation=my_laplace),
|
||||
'data': Condition(
|
||||
input_points=in_,
|
||||
output_points=out_)
|
||||
}
|
||||
|
||||
def poisson_sol(self, pts):
|
||||
return -(
|
||||
torch.sin(pts.extract(['x'])*torch.pi) *
|
||||
torch.sin(pts.extract(['y'])*torch.pi)
|
||||
)/(2*torch.pi**2)
|
||||
|
||||
truth_solution = poisson_sol
|
||||
|
||||
|
||||
class myFeature(torch.nn.Module):
|
||||
"""
|
||||
Feature: sin(x)
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super(myFeature, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
t = (torch.sin(x.extract(['x'])*torch.pi) *
|
||||
torch.sin(x.extract(['y'])*torch.pi))
|
||||
return LabelTensor(t, ['sin(x)sin(y)'])
|
||||
|
||||
|
||||
# make the problem
|
||||
poisson_problem = Poisson()
|
||||
model = FeedForward(len(poisson_problem.input_variables),len(poisson_problem.output_variables))
|
||||
model_extra_feats = FeedForward(len(poisson_problem.input_variables)+1,len(poisson_problem.output_variables))
|
||||
extra_feats = [myFeature()]
|
||||
|
||||
|
||||
def test_constructor():
|
||||
PINN(problem = poisson_problem, model=model, extra_features=None)
|
||||
|
||||
|
||||
def test_constructor_extra_feats():
|
||||
model_extra_feats = FeedForward(len(poisson_problem.input_variables)+1,len(poisson_problem.output_variables))
|
||||
PINN(problem = poisson_problem, model=model_extra_feats, extra_features=extra_feats)
|
||||
|
||||
def test_train_cpu():
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=['D'])
|
||||
pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'cpu'})
|
||||
trainer.train()
|
||||
|
||||
def test_train_extra_feats_cpu():
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=['D'])
|
||||
pinn = PINN(problem = poisson_problem, model=model_extra_feats, extra_features=extra_feats)
|
||||
trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'cpu'})
|
||||
trainer.train()
|
||||
|
||||
"""
|
||||
def test_train_2():
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
expected_keys = [[], list(range(0, 50, 3))]
|
||||
param = [0, 3]
|
||||
for i, truth_key in zip(param, expected_keys):
|
||||
pinn = PINN(problem, model)
|
||||
pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
pinn.train(50, save_loss=i)
|
||||
assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
def test_train_extra_feats():
|
||||
pinn = PINN(problem, model_extra_feat, [myFeature()])
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
pinn.train(5)
|
||||
|
||||
|
||||
def test_train_2_extra_feats():
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
expected_keys = [[], list(range(0, 50, 3))]
|
||||
param = [0, 3]
|
||||
for i, truth_key in zip(param, expected_keys):
|
||||
pinn = PINN(problem, model_extra_feat, [myFeature()])
|
||||
pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
pinn.train(50, save_loss=i)
|
||||
assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
def test_train_with_optimizer_kwargs():
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
expected_keys = [[], list(range(0, 50, 3))]
|
||||
param = [0, 3]
|
||||
for i, truth_key in zip(param, expected_keys):
|
||||
pinn = PINN(problem, model, optimizer_kwargs={'lr' : 0.3})
|
||||
pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
pinn.train(50, save_loss=i)
|
||||
assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
def test_train_with_lr_scheduler():
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
expected_keys = [[], list(range(0, 50, 3))]
|
||||
param = [0, 3]
|
||||
for i, truth_key in zip(param, expected_keys):
|
||||
pinn = PINN(
|
||||
problem,
|
||||
model,
|
||||
lr_scheduler_type=torch.optim.lr_scheduler.CyclicLR,
|
||||
lr_scheduler_kwargs={'base_lr' : 0.1, 'max_lr' : 0.3, 'cycle_momentum': False}
|
||||
)
|
||||
pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
pinn.train(50, save_loss=i)
|
||||
assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
# def test_train_batch():
|
||||
# pinn = PINN(problem, model, batch_size=6)
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(5)
|
||||
|
||||
|
||||
# def test_train_batch_2():
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
# expected_keys = [[], list(range(0, 50, 3))]
|
||||
# param = [0, 3]
|
||||
# for i, truth_key in zip(param, expected_keys):
|
||||
# pinn = PINN(problem, model, batch_size=6)
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(50, save_loss=i)
|
||||
# assert list(pinn.history_loss.keys()) == truth_key
|
||||
|
||||
|
||||
if torch.cuda.is_available():
|
||||
|
||||
# def test_gpu_train():
|
||||
# pinn = PINN(problem, model, batch_size=20, device='cuda')
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 100
|
||||
# pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
# pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
# pinn.train(5)
|
||||
|
||||
def test_gpu_train_nobatch():
|
||||
pinn = PINN(problem, model, batch_size=None, device='cuda')
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 100
|
||||
pinn.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn.discretise_domain(n, 'grid', locations=['D'])
|
||||
pinn.train(5)
|
||||
"""
|
||||
Reference in New Issue
Block a user