fix logic and extend tests
This commit is contained in:
@@ -1,224 +1,238 @@
|
||||
"""Module for the Spline model class."""
|
||||
"""Module for the B-Spline model class."""
|
||||
|
||||
import torch
|
||||
from ..utils import check_consistency
|
||||
import warnings
|
||||
from ..utils import check_positive_integer
|
||||
|
||||
|
||||
class Spline(torch.nn.Module):
|
||||
"""
|
||||
Spline model class.
|
||||
r"""
|
||||
The univariate B-Spline curve model class.
|
||||
|
||||
A univariate B-spline curve of order :math:`k` is a parametric curve defined
|
||||
as a linear combination of B-spline basis functions and control points:
|
||||
|
||||
.. math::
|
||||
|
||||
S(x) = \sum_{i=1}^{n} B_{i,k}(x) C_i, \quad x \in [x_1, x_m]
|
||||
|
||||
where:
|
||||
|
||||
- :math:`C_i \in \mathbb{R}` are the control points. These fixed points
|
||||
influence the shape of the curve but are not generally interpolated,
|
||||
except at the boundaries under certain knot multiplicities.
|
||||
- :math:`B_{i,k}(x)` are the B-spline basis functions of order :math:`k`,
|
||||
i.e., piecewise polynomials of degree :math:`k-1` with support on the
|
||||
interval :math:`[x_i, x_{i+k}]`.
|
||||
- :math:`X = \{ x_1, x_2, \dots, x_m \}` is the non-decreasing knot vector.
|
||||
|
||||
If the first and last knots are repeated :math:`k` times, then the curve
|
||||
interpolates the first and last control points.
|
||||
|
||||
|
||||
.. note::
|
||||
|
||||
The curve is forced to be zero outside the interval defined by the
|
||||
first and last knots.
|
||||
|
||||
|
||||
:Example:
|
||||
|
||||
>>> from pina.model import Spline
|
||||
>>> import torch
|
||||
|
||||
>>> knots1 = torch.tensor([0.0, 0.0, 0.0, 1.0, 2.0, 2.0, 2.0])
|
||||
>>> spline1 = Spline(order=3, knots=knots1, control_points=None)
|
||||
|
||||
>>> knots2 = {"n": 7, "min": 0.0, "max": 2.0, "mode": "auto"}
|
||||
>>> spline2 = Spline(order=3, knots=knots2, control_points=None)
|
||||
|
||||
>>> knots3 = torch.tensor([0.0, 0.0, 0.0, 1.0, 2.0, 2.0, 2.0])
|
||||
>>> control_points3 = torch.tensor([0.0, 1.0, 3.0, 2.0])
|
||||
>>> spline3 = Spline(order=3, knots=knots3, control_points=control_points3)
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, order=4, knots=None, control_points=None, grid_extension=True
|
||||
):
|
||||
def __init__(self, order=4, knots=None, control_points=None):
|
||||
"""
|
||||
Initialization of the :class:`Spline` class.
|
||||
|
||||
:param int order: The order of the spline. Default is ``4``.
|
||||
:param torch.Tensor knots: The tensor representing knots. If ``None``,
|
||||
the knots will be initialized automatically. Default is ``None``.
|
||||
:param torch.Tensor control_points: The control points. Default is
|
||||
``None``.
|
||||
:raises ValueError: If the order is negative.
|
||||
:raises ValueError: If both knots and control points are ``None``.
|
||||
:raises ValueError: If the knot tensor is not one or two dimensional.
|
||||
:param int order: The order of the spline. The corresponding basis
|
||||
functions are polynomials of degree ``order - 1``. Default is 4.
|
||||
:param knots: The knots of the spline. If a tensor is provided, knots
|
||||
are set directly from the tensor. If a dictionary is provided, it
|
||||
must contain the keys ``"n"``, ``"min"``, ``"max"``, and ``"mode"``.
|
||||
Here, ``"n"`` specifies the number of knots, ``"min"`` and ``"max"``
|
||||
define the interval, and ``"mode"`` selects the sampling strategy.
|
||||
The supported modes are ``"uniform"``, where the knots are evenly
|
||||
spaced over :math:`[min, max]`, and ``"auto"``, where knots are
|
||||
constructed to ensure that the spline interpolates the first and
|
||||
last control points. In this case, the number of knots is adjusted
|
||||
if :math:`n < 2 * order`. If None is given, knots are initialized
|
||||
automatically over :math:`[0, 1]` ensuring interpolation of the
|
||||
first and last control points. Default is None.
|
||||
:type knots: torch.Tensor | dict
|
||||
:param torch.Tensor control_points: The control points of the spline.
|
||||
If None, they are initialized as learnable parameters with an
|
||||
initial value of zero. Default is None.
|
||||
:raises AssertionError: If ``order`` is not a positive integer.
|
||||
:raises ValueError: If both ``knots`` and ``control_points`` are None.
|
||||
:raises ValueError: If ``knots`` is not one-dimensional.
|
||||
:raises ValueError: If ``control_points`` is not one-dimensional.
|
||||
:raises ValueError: If the number of ``knots`` is not equal to the sum
|
||||
of ``order`` and the number of ``control_points.``
|
||||
:raises UserWarning: If the number of control points is lower than the
|
||||
order, resulting in a degenerate spline.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
check_consistency(order, int)
|
||||
# Check consistency
|
||||
check_positive_integer(value=order, strict=True)
|
||||
|
||||
if order < 0:
|
||||
raise ValueError("Spline order cannot be negative.")
|
||||
# Raise error if neither knots nor control points are provided
|
||||
if knots is None and control_points is None:
|
||||
raise ValueError("Knots and control points cannot be both None.")
|
||||
raise ValueError("knots and control_points cannot both be None.")
|
||||
|
||||
self.order = order
|
||||
self.k = order - 1
|
||||
self.grid_extension = grid_extension
|
||||
|
||||
# Cache for performance optimization
|
||||
self._boundary_interval_idx = None
|
||||
|
||||
if knots is not None and control_points is not None:
|
||||
self.knots = knots
|
||||
self.control_points = control_points
|
||||
|
||||
elif knots is not None:
|
||||
print("Warning: control points will be initialized automatically.")
|
||||
print(" experimental feature")
|
||||
|
||||
self.knots = knots
|
||||
n = len(knots) - order
|
||||
self.control_points = torch.nn.Parameter(
|
||||
torch.zeros(n), requires_grad=True
|
||||
)
|
||||
|
||||
elif control_points is not None:
|
||||
print("Warning: knots will be initialized automatically.")
|
||||
print(" experimental feature")
|
||||
|
||||
self.control_points = control_points
|
||||
|
||||
n = len(self.control_points) - 1
|
||||
self.knots = {
|
||||
"type": "auto",
|
||||
# Initialize knots if not provided
|
||||
if knots is None and control_points is not None:
|
||||
knots = {
|
||||
"n": len(control_points) + order,
|
||||
"min": 0,
|
||||
"max": 1,
|
||||
"n": n + 2 + self.order,
|
||||
"mode": "auto",
|
||||
}
|
||||
|
||||
else:
|
||||
raise ValueError("Knots and control points cannot be both None.")
|
||||
# Initialization - knots and control points managed by their setters
|
||||
self.order = order
|
||||
self.knots = knots
|
||||
self.control_points = control_points
|
||||
|
||||
if self.knots.ndim > 2:
|
||||
raise ValueError("Knot vector must be one or two-dimensional.")
|
||||
# Check dimensionality of knots
|
||||
if self.knots.ndim > 1:
|
||||
raise ValueError("knots must be one-dimensional.")
|
||||
|
||||
# Precompute boundary interval index for performance
|
||||
self._compute_boundary_interval()
|
||||
# Check dimensionality of control points
|
||||
if self.control_points.ndim > 1:
|
||||
raise ValueError("control_points must be one-dimensional.")
|
||||
|
||||
# Raise error if #knots != order + #control_points
|
||||
if len(self.knots) != self.order + len(self.control_points):
|
||||
raise ValueError(
|
||||
f" The number of knots must be equal to order + number of"
|
||||
f" control points. Got {len(self.knots)} knots, {self.order}"
|
||||
f" order and {len(self.control_points)} control points."
|
||||
)
|
||||
|
||||
# Raise warning if spline is degenerate
|
||||
if len(self.control_points) < self.order:
|
||||
warnings.warn(
|
||||
"The number of control points is smaller than the spline order."
|
||||
" This creates a degenerate spline with limited flexibility.",
|
||||
UserWarning,
|
||||
)
|
||||
|
||||
# Precompute boundary interval index
|
||||
self._boundary_interval_idx = self._compute_boundary_interval()
|
||||
|
||||
def _compute_boundary_interval(self):
|
||||
"""
|
||||
Precompute the rightmost non-degenerate interval index for performance.
|
||||
This avoids the search loop in the basis function on every call.
|
||||
Precompute the index of the rightmost non-degenerate interval to improve
|
||||
performance, eliminating the need to perform a search loop in the basis
|
||||
function on each call.
|
||||
|
||||
:return: The index of the rightmost non-degenerate interval.
|
||||
:rtype: int
|
||||
"""
|
||||
# Handle multi-dimensional knots
|
||||
if self.knots.ndim > 1:
|
||||
# For multi-dimensional knots, we'll handle boundary detection in
|
||||
# the basis function
|
||||
self._boundary_interval_idx = None
|
||||
return
|
||||
# Return 0 if there is a single interval
|
||||
if len(self.knots) < 2:
|
||||
return 0
|
||||
|
||||
# For 1D knots, find the rightmost non-degenerate interval
|
||||
for i in range(len(self.knots) - 2, -1, -1):
|
||||
if self.knots[i] < self.knots[i + 1]: # Non-degenerate interval found
|
||||
self._boundary_interval_idx = i
|
||||
return
|
||||
# Find all indices where knots are strictly increasing
|
||||
diffs = self.knots[1:] - self.knots[:-1]
|
||||
valid = torch.nonzero(diffs > 0, as_tuple=False)
|
||||
|
||||
self._boundary_interval_idx = len(self.knots) - 2 if len(self.knots) > 1 else 0
|
||||
# If all knots are equal, return 0 for degenerate spline
|
||||
if valid.numel() == 0:
|
||||
return 0
|
||||
|
||||
def basis(self, x, k, knots):
|
||||
# Otherwise, return the last valid index
|
||||
return int(valid[-1])
|
||||
|
||||
def basis(self, x):
|
||||
"""
|
||||
Compute the basis functions for the spline using an iterative approach.
|
||||
This is a vectorized implementation based on the Cox-de Boor recursion.
|
||||
|
||||
:param torch.Tensor x: The points to be evaluated.
|
||||
:param int k: The spline degree.
|
||||
:param torch.Tensor knots: The tensor of knots.
|
||||
:return: The basis functions evaluated at x
|
||||
:return: The basis functions evaluated at x.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
# Add a final dimension to x
|
||||
x = x.unsqueeze(-1)
|
||||
|
||||
if x.ndim == 1:
|
||||
x = x.unsqueeze(1) # (batch_size, 1)
|
||||
if x.ndim == 2:
|
||||
x = x.unsqueeze(2) # (batch_size, in_dim, 1)
|
||||
# Add an initial dimension to knots
|
||||
knots = self.knots.unsqueeze(0)
|
||||
|
||||
if knots.ndim == 1:
|
||||
knots = knots.unsqueeze(0) # (1, n_knots)
|
||||
if knots.ndim == 2:
|
||||
knots = knots.unsqueeze(0) # (1, in_dim, n_knots)
|
||||
|
||||
# Base case: k=0
|
||||
# Base case of recursion: indicator functions for the intervals
|
||||
basis = (x >= knots[..., :-1]) & (x < knots[..., 1:])
|
||||
basis = basis.to(x.dtype)
|
||||
|
||||
# One-dimensional knots case: ensure rightmost boundary inclusion
|
||||
if self._boundary_interval_idx is not None:
|
||||
i = self._boundary_interval_idx
|
||||
tolerance = 1e-10
|
||||
x_squeezed = x.squeeze(-1)
|
||||
knot_left = knots[..., i]
|
||||
knot_right = knots[..., i + 1]
|
||||
|
||||
at_right_boundary = torch.abs(x_squeezed - knot_right) <= tolerance
|
||||
in_rightmost_interval = (
|
||||
x_squeezed >= knot_left
|
||||
) & at_right_boundary
|
||||
# Extract left and right knots of the rightmost interval
|
||||
knot_left = knots[..., self._boundary_interval_idx]
|
||||
knot_right = knots[..., self._boundary_interval_idx + 1]
|
||||
|
||||
if torch.any(in_rightmost_interval):
|
||||
# For points at the boundary, ensure they're included in the
|
||||
# rightmost interval
|
||||
basis[..., i] = torch.logical_or(
|
||||
basis[..., i].bool(), in_rightmost_interval
|
||||
# Identify points at the rightmost boundary
|
||||
at_rightmost_boundary = (
|
||||
x.squeeze(-1) >= knot_left
|
||||
) & torch.isclose(x.squeeze(-1), knot_right, rtol=1e-8, atol=1e-10)
|
||||
|
||||
# Ensure the correct value is set at the rightmost boundary
|
||||
if torch.any(at_rightmost_boundary):
|
||||
basis[..., self._boundary_interval_idx] = torch.logical_or(
|
||||
basis[..., self._boundary_interval_idx].bool(),
|
||||
at_rightmost_boundary,
|
||||
).to(basis.dtype)
|
||||
|
||||
# Iterative step (Cox-de Boor recursion)
|
||||
for i in range(1, k + 1):
|
||||
# First term of the recursion
|
||||
# Iterative case of recursion
|
||||
for i in range(1, self.order):
|
||||
|
||||
# Compute the denominators for both terms
|
||||
denom1 = knots[..., i:-1] - knots[..., : -(i + 1)]
|
||||
denom2 = knots[..., i + 1 :] - knots[..., 1:-i]
|
||||
|
||||
# Ensure no division by zero
|
||||
denom1 = torch.where(
|
||||
torch.abs(denom1) < 1e-8, torch.ones_like(denom1), denom1
|
||||
)
|
||||
numer1 = x - knots[..., : -(i + 1)]
|
||||
term1 = (numer1 / denom1) * basis[..., :-1]
|
||||
|
||||
denom2 = knots[..., i + 1 :] - knots[..., 1:-i]
|
||||
denom2 = torch.where(
|
||||
torch.abs(denom2) < 1e-8, torch.ones_like(denom2), denom2
|
||||
)
|
||||
numer2 = knots[..., i + 1 :] - x
|
||||
term2 = (numer2 / denom2) * basis[..., 1:]
|
||||
|
||||
# Compute the two terms of the recursion
|
||||
term1 = ((x - knots[..., : -(i + 1)]) / denom1) * basis[..., :-1]
|
||||
term2 = ((knots[..., i + 1 :] - x) / denom2) * basis[..., 1:]
|
||||
|
||||
# Combine terms to get the new basis
|
||||
basis = term1 + term2
|
||||
|
||||
return basis
|
||||
|
||||
def compute_control_points(self, x_eval, y_eval):
|
||||
"""
|
||||
Compute control points from given evaluations using least squares.
|
||||
This method fits the control points to match the target y_eval values.
|
||||
"""
|
||||
# (batch, in_dim)
|
||||
A = self.basis(x_eval, self.k, self.knots)
|
||||
# (batch, in_dim, n_basis)
|
||||
|
||||
in_dim = A.shape[1]
|
||||
out_dim = y_eval.shape[2]
|
||||
n_basis = A.shape[2]
|
||||
c = torch.zeros(in_dim, out_dim, n_basis).to(A.device)
|
||||
|
||||
for i in range(in_dim):
|
||||
# A_i is (batch, n_basis)
|
||||
# y_i is (batch, out_dim)
|
||||
A_i = A[:, i, :]
|
||||
y_i = y_eval[:, i, :]
|
||||
c_i = torch.linalg.lstsq(A_i, y_i).solution # (n_basis, out_dim)
|
||||
c[i, :, :] = c_i.T # (out_dim, n_basis)
|
||||
|
||||
self.control_points = torch.nn.Parameter(c)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward pass for the :class:`Spline` model.
|
||||
|
||||
:param torch.Tensor x: The input tensor.
|
||||
:param x: The input tensor.
|
||||
:type x: torch.Tensor | LabelTensor
|
||||
:return: The output tensor.
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
t = self.knots
|
||||
k = self.k
|
||||
c = self.control_points
|
||||
|
||||
# Create the basis functions
|
||||
# B will have shape (batch, in_dim, n_basis)
|
||||
B = self.basis(x, k, t)
|
||||
|
||||
# KAN case where control points are (in_dim, out_dim, n_basis)
|
||||
if c.ndim == 3:
|
||||
y_ij = torch.einsum(
|
||||
"bil,iol->bio", B, c
|
||||
) # (batch, in_dim, out_dim)
|
||||
# sum over input dimensions
|
||||
y = torch.sum(y_ij, dim=1) # (batch, out_dim)
|
||||
# Original test case
|
||||
else:
|
||||
B = B.squeeze(1) # (batch, n_basis)
|
||||
if c.ndim == 1:
|
||||
y = torch.einsum("bi,i->b", B, c)
|
||||
else:
|
||||
y = torch.einsum("bi,ij->bj", B, c)
|
||||
|
||||
return y
|
||||
return torch.einsum(
|
||||
"bi, i -> b",
|
||||
self.basis(x.as_subclass(torch.Tensor)).squeeze(1),
|
||||
self.control_points,
|
||||
).reshape(-1, 1)
|
||||
|
||||
@property
|
||||
def control_points(self):
|
||||
@@ -231,27 +245,42 @@ class Spline(torch.nn.Module):
|
||||
return self._control_points
|
||||
|
||||
@control_points.setter
|
||||
def control_points(self, value):
|
||||
def control_points(self, control_points):
|
||||
"""
|
||||
Set the control points of the spline.
|
||||
|
||||
:param value: The control points.
|
||||
:type value: torch.Tensor | dict
|
||||
:raises ValueError: If invalid value is passed.
|
||||
:param torch.Tensor control_points: The control points tensor. If None,
|
||||
control points are initialized to learnable parameters with zero
|
||||
initial value. Default is None.
|
||||
:raises ValueError: If there are not enough knots to define the control
|
||||
points, due to the relation: #knots = order + #control_points.
|
||||
:raises ValueError: If control_points is not a torch.Tensor.
|
||||
"""
|
||||
if isinstance(value, dict):
|
||||
if "n" not in value:
|
||||
raise ValueError("Invalid value for control_points")
|
||||
n = value["n"]
|
||||
dim = value.get("dim", 1)
|
||||
value = torch.zeros(n, dim)
|
||||
# If control points are not provided, initialize them
|
||||
if control_points is None:
|
||||
|
||||
if not isinstance(value, torch.nn.Parameter):
|
||||
value = torch.nn.Parameter(value)
|
||||
# Check that there are enough knots to define control points
|
||||
if len(self.knots) < self.order + 1:
|
||||
raise ValueError(
|
||||
f"Not enough knots to define control points. Got "
|
||||
f"{len(self.knots)} knots, but need at least "
|
||||
f"{self.order + 1}."
|
||||
)
|
||||
|
||||
if not isinstance(value, torch.Tensor):
|
||||
raise ValueError("Invalid value for control_points")
|
||||
self._control_points = value
|
||||
# Initialize control points to zero
|
||||
control_points = torch.zeros(len(self.knots) - self.order)
|
||||
|
||||
# Check validity of control points
|
||||
elif not isinstance(control_points, torch.Tensor):
|
||||
raise ValueError(
|
||||
"control_points must be a torch.Tensor,"
|
||||
f" got {type(control_points)}"
|
||||
)
|
||||
|
||||
# Set control points
|
||||
self._control_points = torch.nn.Parameter(
|
||||
control_points, requires_grad=True
|
||||
)
|
||||
|
||||
@property
|
||||
def knots(self):
|
||||
@@ -268,37 +297,80 @@ class Spline(torch.nn.Module):
|
||||
"""
|
||||
Set the knots of the spline.
|
||||
|
||||
:param value: The knots.
|
||||
:param value: The knots of the spline. If a tensor is provided, knots
|
||||
are set directly from the tensor. If a dictionary is provided, it
|
||||
must contain the keys ``"n"``, ``"min"``, ``"max"``, and ``"mode"``.
|
||||
Here, ``"n"`` specifies the number of knots, ``"min"`` and ``"max"``
|
||||
define the interval, and ``"mode"`` selects the sampling strategy.
|
||||
The supported modes are ``"uniform"``, where the knots are evenly
|
||||
spaced over :math:`[min, max]`, and ``"auto"``, where knots are
|
||||
constructed to ensure that the spline interpolates the first and
|
||||
last control points. In this case, the number of knots is inferred
|
||||
and the ``"n"`` key is ignored.
|
||||
:type value: torch.Tensor | dict
|
||||
:raises ValueError: If invalid value is passed.
|
||||
:raises ValueError: If value is not a torch.Tensor or a dictionary.
|
||||
:raises ValueError: If a dictionary is provided but does not contain
|
||||
the required keys.
|
||||
:raises ValueError: If the mode specified in the dictionary is invalid.
|
||||
"""
|
||||
# Check validity of knots
|
||||
if not isinstance(value, (torch.Tensor, dict)):
|
||||
raise ValueError(
|
||||
"Knots must be a torch.Tensor or a dictionary,"
|
||||
f" got {type(value)}."
|
||||
)
|
||||
|
||||
# If a dictionary is provided, initialize knots accordingly
|
||||
if isinstance(value, dict):
|
||||
|
||||
type_ = value.get("type", "auto")
|
||||
min_ = value.get("min", 0)
|
||||
max_ = value.get("max", 1)
|
||||
n = value.get("n", 10)
|
||||
# Check that required keys are present
|
||||
required_keys = {"n", "min", "max", "mode"}
|
||||
if not required_keys.issubset(value.keys()):
|
||||
raise ValueError(
|
||||
f"When providing knots as a dictionary, the following "
|
||||
f"keys must be present: {required_keys}. Got "
|
||||
f"{value.keys()}."
|
||||
)
|
||||
|
||||
if type_ == "uniform":
|
||||
value = torch.linspace(min_, max_, n + self.k + 1)
|
||||
elif type_ == "auto":
|
||||
initial_knots = torch.ones(self.order + 1) * min_
|
||||
final_knots = torch.ones(self.order + 1) * max_
|
||||
# Uniform sampling of knots
|
||||
if value["mode"] == "uniform":
|
||||
value = torch.linspace(value["min"], value["max"], value["n"])
|
||||
|
||||
if n < self.order + 1:
|
||||
value = torch.concatenate((initial_knots, final_knots))
|
||||
elif n - 2 * self.order + 1 == 1:
|
||||
value = torch.Tensor([(max_ + min_) / 2])
|
||||
# Automatic sampling of interpolating knots
|
||||
elif value["mode"] == "auto":
|
||||
|
||||
# Repeat the first and last knots 'order' times
|
||||
initial_knots = torch.ones(self.order) * value["min"]
|
||||
final_knots = torch.ones(self.order) * value["max"]
|
||||
|
||||
# Number of internal knots
|
||||
n_internal = value["n"] - 2 * self.order
|
||||
|
||||
# If no internal knots are needed, just concatenate boundaries
|
||||
if n_internal <= 0:
|
||||
value = torch.cat((initial_knots, final_knots))
|
||||
|
||||
# Else, sample internal knots uniformly and exclude boundaries
|
||||
# Recover the correct number of internal knots when slicing by
|
||||
# adding 2 to n_internal
|
||||
else:
|
||||
value = torch.linspace(min_, max_, n - 2 * self.order - 1)
|
||||
internal_knots = torch.linspace(
|
||||
value["min"], value["max"], n_internal + 2
|
||||
)[1:-1]
|
||||
value = torch.cat(
|
||||
(initial_knots, internal_knots, final_knots)
|
||||
)
|
||||
|
||||
value = torch.concatenate((initial_knots, value, final_knots))
|
||||
# Raise error if mode is invalid
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Invalid mode for knots initialization. Got "
|
||||
f"{value['mode']}, but expected 'uniform' or 'auto'."
|
||||
)
|
||||
|
||||
if not isinstance(value, torch.Tensor):
|
||||
raise ValueError("Invalid value for knots")
|
||||
|
||||
self._knots = value
|
||||
# Set knots
|
||||
self.register_buffer("_knots", value.sort(dim=0).values)
|
||||
|
||||
# Recompute boundary interval when knots change
|
||||
if hasattr(self, "_boundary_interval_idx"):
|
||||
self._compute_boundary_interval()
|
||||
self._boundary_interval_idx = self._compute_boundary_interval()
|
||||
|
||||
@@ -1,81 +1,171 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
import numpy as np
|
||||
from scipy.interpolate import BSpline
|
||||
from pina.model import Spline
|
||||
|
||||
data = torch.rand((20, 3))
|
||||
input_vars = 3
|
||||
output_vars = 4
|
||||
|
||||
valid_args = [
|
||||
{
|
||||
"knots": torch.tensor([0.0, 0.0, 0.0, 1.0, 2.0, 3.0, 3.0, 3.0]),
|
||||
"control_points": torch.tensor([0.0, 0.0, 1.0, 0.0, 0.0]),
|
||||
"order": 3,
|
||||
},
|
||||
{
|
||||
"knots": torch.tensor(
|
||||
[-2.0, -2.0, -2.0, -2.0, -1.0, 0.0, 1.0, 2.0, 2.0, 2.0, 2.0]
|
||||
),
|
||||
"control_points": torch.tensor([0.0, 0.0, 0.0, 6.0, 0.0, 0.0, 0.0]),
|
||||
"order": 4,
|
||||
},
|
||||
# {'control_points': {'n': 5, 'dim': 1}, 'order': 2},
|
||||
# {'control_points': {'n': 7, 'dim': 1}, 'order': 3}
|
||||
]
|
||||
from pina import LabelTensor
|
||||
|
||||
|
||||
def scipy_check(model, x, y):
|
||||
from scipy.interpolate._bsplines import BSpline
|
||||
import numpy as np
|
||||
# Utility quantities for testing
|
||||
order = torch.randint(1, 8, (1,)).item()
|
||||
n_ctrl_pts = torch.randint(order, order + 5, (1,)).item()
|
||||
n_knots = order + n_ctrl_pts
|
||||
|
||||
spline = BSpline(
|
||||
# Input tensor
|
||||
pts = LabelTensor(torch.linspace(0, 1, 100).reshape(-1, 1), ["x"])
|
||||
|
||||
|
||||
# Function to compare with scipy implementation
|
||||
def check_scipy_spline(model, x, output_):
|
||||
|
||||
# Define scipy spline
|
||||
scipy_spline = BSpline(
|
||||
t=model.knots.detach().numpy(),
|
||||
c=model.control_points.detach().numpy(),
|
||||
k=model.order - 1,
|
||||
)
|
||||
y_scipy = spline(x).flatten()
|
||||
y = y.detach().numpy()
|
||||
np.testing.assert_allclose(y, y_scipy, atol=1e-5)
|
||||
|
||||
# Compare outputs
|
||||
np.testing.assert_allclose(
|
||||
output_.squeeze().detach().numpy(),
|
||||
scipy_spline(x).flatten(),
|
||||
atol=1e-5,
|
||||
rtol=1e-5,
|
||||
)
|
||||
|
||||
|
||||
# Define all possible combinations of valid arguments for the Spline class
|
||||
valid_args = [
|
||||
{
|
||||
"order": order,
|
||||
"control_points": torch.rand(n_ctrl_pts),
|
||||
"knots": torch.linspace(0, 1, n_knots),
|
||||
},
|
||||
{
|
||||
"order": order,
|
||||
"control_points": torch.rand(n_ctrl_pts),
|
||||
"knots": {"n": n_knots, "min": 0, "max": 1, "mode": "auto"},
|
||||
},
|
||||
{
|
||||
"order": order,
|
||||
"control_points": torch.rand(n_ctrl_pts),
|
||||
"knots": {"n": n_knots, "min": 0, "max": 1, "mode": "uniform"},
|
||||
},
|
||||
{
|
||||
"order": order,
|
||||
"control_points": None,
|
||||
"knots": torch.linspace(0, 1, n_knots),
|
||||
},
|
||||
{
|
||||
"order": order,
|
||||
"control_points": None,
|
||||
"knots": {"n": n_knots, "min": 0, "max": 1, "mode": "auto"},
|
||||
},
|
||||
{
|
||||
"order": order,
|
||||
"control_points": None,
|
||||
"knots": {"n": n_knots, "min": 0, "max": 1, "mode": "uniform"},
|
||||
},
|
||||
{
|
||||
"order": order,
|
||||
"control_points": torch.rand(n_ctrl_pts),
|
||||
"knots": None,
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("args", valid_args)
|
||||
def test_constructor(args):
|
||||
Spline(**args)
|
||||
|
||||
# Should fail if order is not a positive integer
|
||||
with pytest.raises(AssertionError):
|
||||
Spline(
|
||||
order=-1, control_points=args["control_points"], knots=args["knots"]
|
||||
)
|
||||
|
||||
def test_constructor_wrong():
|
||||
# Should fail if control_points is not None or a torch.Tensor
|
||||
with pytest.raises(ValueError):
|
||||
Spline()
|
||||
Spline(
|
||||
order=args["order"], control_points=[1, 2, 3], knots=args["knots"]
|
||||
)
|
||||
|
||||
# Should fail if knots is not None, a torch.Tensor, or a dict
|
||||
with pytest.raises(ValueError):
|
||||
Spline(
|
||||
order=args["order"], control_points=args["control_points"], knots=5
|
||||
)
|
||||
|
||||
# Should fail if both knots and control_points are None
|
||||
with pytest.raises(ValueError):
|
||||
Spline(order=args["order"], control_points=None, knots=None)
|
||||
|
||||
# Should fail if knots is not one-dimensional
|
||||
with pytest.raises(ValueError):
|
||||
Spline(
|
||||
order=args["order"],
|
||||
control_points=args["control_points"],
|
||||
knots=torch.rand(n_knots, 4),
|
||||
)
|
||||
|
||||
# Should fail if control_points is not one-dimensional
|
||||
with pytest.raises(ValueError):
|
||||
Spline(
|
||||
order=args["order"],
|
||||
control_points=torch.rand(n_ctrl_pts, 4),
|
||||
knots=args["knots"],
|
||||
)
|
||||
|
||||
# Should fail if the number of knots != order + number of control points
|
||||
# If control points are None, they are initialized to fulfill this condition
|
||||
if args["control_points"] is not None:
|
||||
with pytest.raises(ValueError):
|
||||
Spline(
|
||||
order=args["order"],
|
||||
control_points=args["control_points"],
|
||||
knots=torch.linspace(0, 1, n_knots + 1),
|
||||
)
|
||||
|
||||
# Should fail if the knot dict is missing required keys
|
||||
with pytest.raises(ValueError):
|
||||
Spline(
|
||||
order=args["order"],
|
||||
control_points=args["control_points"],
|
||||
knots={"n": n_knots, "min": 0, "max": 1},
|
||||
)
|
||||
|
||||
# Should fail if the knot dict has invalid 'mode' key
|
||||
with pytest.raises(ValueError):
|
||||
Spline(
|
||||
order=args["order"],
|
||||
control_points=args["control_points"],
|
||||
knots={"n": n_knots, "min": 0, "max": 1, "mode": "invalid"},
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("args", valid_args)
|
||||
def test_forward(args):
|
||||
min_x = args["knots"][0]
|
||||
max_x = args["knots"][-1]
|
||||
xi = torch.linspace(min_x, max_x, 1000)
|
||||
|
||||
# Define the model
|
||||
model = Spline(**args)
|
||||
yi = model(xi).squeeze()
|
||||
scipy_check(model, xi, yi)
|
||||
return
|
||||
|
||||
# Evaluate the model
|
||||
output_ = model(pts)
|
||||
assert output_.shape == (pts.shape[0], 1)
|
||||
|
||||
# Compare with scipy implementation only for interpolant knots (mode: auto)
|
||||
if isinstance(args["knots"], dict) and args["knots"]["mode"] == "auto":
|
||||
check_scipy_spline(model, pts, output_)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("args", valid_args)
|
||||
def test_backward(args):
|
||||
min_x = args["knots"][0]
|
||||
max_x = args["knots"][-1]
|
||||
xi = torch.linspace(min_x, max_x, 100)
|
||||
model = Spline(**args)
|
||||
yi = model(xi)
|
||||
fake_loss = torch.sum(yi)
|
||||
assert model.control_points.grad is None
|
||||
fake_loss.backward()
|
||||
assert model.control_points.grad is not None
|
||||
|
||||
# dim_in, dim_out = 3, 2
|
||||
# fnn = FeedForward(dim_in, dim_out)
|
||||
# data.requires_grad = True
|
||||
# output_ = fnn(data)
|
||||
# l=torch.mean(output_)
|
||||
# l.backward()
|
||||
# assert data._grad.shape == torch.Size([20,3])
|
||||
# Define the model
|
||||
model = Spline(**args)
|
||||
|
||||
# Evaluate the model
|
||||
output_ = model(pts)
|
||||
loss = torch.mean(output_)
|
||||
loss.backward()
|
||||
assert model.control_points.grad.shape == model.control_points.shape
|
||||
|
||||
Reference in New Issue
Block a user