diff --git a/pina/geometry/cartesian.py b/pina/geometry/cartesian.py index a1aa30e..6c8f810 100644 --- a/pina/geometry/cartesian.py +++ b/pina/geometry/cartesian.py @@ -2,31 +2,22 @@ import torch from .location import Location from ..label_tensor import LabelTensor -from ..utils import torch_lhs, chebyshev_roots, check_consistency +from ..utils import torch_lhs, chebyshev_roots class CartesianDomain(Location): """PINA implementation of Hypercube domain.""" - def __init__(self, span_dict, sample_surface=False): + def __init__(self, span_dict): """ :param span_dict: A dictionary with dict-key a string representing the input variables for the pinn, and dict-value a list with the domain extrema. :type span_dict: dict - :param sample_surface: A variable for choosing sample strategies. If - `sample_surface=True` only samples on the Cartesian surface - frontier are taken. If `sample_surface=False`, no such criteria - is followed. - :type sample_surface: bool :Example: >>> spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]}) """ - # check consistency of sample_surface as bool - check_consistency(sample_surface, bool) - self._sample_surface = sample_surface - self.fixed_ = {} self.range_ = {} @@ -51,13 +42,13 @@ class CartesianDomain(Location): """Adding new dimensions on the span :param new_span: A new span object to merge - :type new_span: CartesianDomain + :type new_span: Span :Example: - >>> spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]}) + >>> spatial_domain = Span({'x': [0, 1], 'y': [0, 1]}) >>> spatial_domain.variables ['x', 'y'] - >>> spatial_domain_2 = CartesianDomain({'z': [3, 4], 'w': [0, 1]}) + >>> spatial_domain_2 = Span({'z': [3, 4], 'w': [0, 1]}) >>> spatial_domain.update(spatial_domain_2) >>> spatial_domain.variables ['x', 'y', 'z', 'w'] @@ -83,7 +74,7 @@ class CartesianDomain(Location): """ dim = bounds.shape[0] if mode in ['chebyshev', 'grid'] and dim != 1: - raise RuntimeError('Something wrong in CartesianDomain...') + raise RuntimeError('Something wrong in Span...') if mode == 'random': pts = torch.rand(size=(n, dim)) @@ -124,10 +115,10 @@ class CartesianDomain(Location): are sampled all together, and the final number of points .. warning:: - The extrema values of CartesianDomain are always sampled only for 'grid' mode. + The extrema values of Span are always sampled only for 'grid' mode. :Example: - >>> spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]}) + >>> spatial_domain = Span({'x': [0, 1], 'y': [0, 1]}) >>> spatial_domain.sample(n=4, mode='random') tensor([[0.0108, 0.7643], [0.4477, 0.8015], @@ -152,7 +143,7 @@ class CartesianDomain(Location): [1.0000, 1.0000]]) """ def _1d_sampler(n, mode, variables): - """ Sample independently the variables and cross the results""" + """ Sample independentely the variables and cross the results""" tmp = [] for variable in variables: if variable in self.range_.keys():