Update of LabelTensor class and fix Simplex domain (#362)
*Implement new methods in LabelTensor and fix operators
This commit is contained in:
committed by
Nicola Demo
parent
fdb8f65143
commit
7528f6ef74
@@ -1,3 +1,6 @@
|
||||
from sympy.strategies.branch import condition
|
||||
|
||||
from . import LabelTensor
|
||||
from .utils import check_consistency, merge_tensors
|
||||
|
||||
class Collector:
|
||||
@@ -51,7 +54,7 @@ class Collector:
|
||||
already_sampled = []
|
||||
# if we have sampled the condition but not all variables
|
||||
else:
|
||||
already_sampled = [self.data_collections[loc].input_points]
|
||||
already_sampled = [self.data_collections[loc]['input_points']]
|
||||
# if the condition is ready but we want to sample again
|
||||
else:
|
||||
self.is_conditions_ready[loc] = False
|
||||
@@ -63,10 +66,24 @@ class Collector:
|
||||
] + already_sampled
|
||||
pts = merge_tensors(samples)
|
||||
if (
|
||||
sorted(self.data_collections[loc].input_points.labels)
|
||||
==
|
||||
sorted(self.problem.input_variables)
|
||||
set(pts.labels).issubset(sorted(self.problem.input_variables))
|
||||
):
|
||||
self.is_conditions_ready[loc] = True
|
||||
pts = pts.sort_labels()
|
||||
if sorted(pts.labels)==sorted(self.problem.input_variables):
|
||||
self.is_conditions_ready[loc] = True
|
||||
values = [pts, condition.equation]
|
||||
self.data_collections[loc] = dict(zip(keys, values))
|
||||
self.data_collections[loc] = dict(zip(keys, values))
|
||||
else:
|
||||
raise RuntimeError('Try to sample variables which are not in problem defined in the problem')
|
||||
|
||||
def add_points(self, new_points_dict):
|
||||
"""
|
||||
Add input points to a sampled condition
|
||||
|
||||
:param new_points_dict: Dictonary of input points (condition_name: LabelTensor)
|
||||
:raises RuntimeError: if at least one condition is not already sampled
|
||||
"""
|
||||
for k,v in new_points_dict.items():
|
||||
if not self.is_conditions_ready[k]:
|
||||
raise RuntimeError('Cannot add points on a non sampled condition')
|
||||
self.data_collections[k]['input_points'] = self.data_collections[k]['input_points'].vstack(v)
|
||||
@@ -27,4 +27,6 @@ class DataConditionInterface(ConditionInterface):
|
||||
def __setattr__(self, key, value):
|
||||
if (key == 'data') or (key == 'conditionalvariable'):
|
||||
check_consistency(value, (LabelTensor, Graph, torch.Tensor))
|
||||
DataConditionInterface.__dict__[key].__set__(self, value)
|
||||
DataConditionInterface.__dict__[key].__set__(self, value)
|
||||
elif key in ('_condition_type', '_problem', 'problem', 'condition_type'):
|
||||
super().__setattr__(key, value)
|
||||
@@ -28,4 +28,6 @@ class DomainEquationCondition(ConditionInterface):
|
||||
DomainEquationCondition.__dict__[key].__set__(self, value)
|
||||
elif key == 'equation':
|
||||
check_consistency(value, (EquationInterface))
|
||||
DomainEquationCondition.__dict__[key].__set__(self, value)
|
||||
DomainEquationCondition.__dict__[key].__set__(self, value)
|
||||
elif key in ('_condition_type', '_problem', 'problem', 'condition_type'):
|
||||
super().__setattr__(key, value)
|
||||
@@ -21,7 +21,7 @@ class InputPointsEquationCondition(ConditionInterface):
|
||||
super().__init__()
|
||||
self.input_points = input_points
|
||||
self.equation = equation
|
||||
self.condition_type = 'physics'
|
||||
self._condition_type = 'physics'
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
if key == 'input_points':
|
||||
@@ -29,4 +29,6 @@ class InputPointsEquationCondition(ConditionInterface):
|
||||
InputPointsEquationCondition.__dict__[key].__set__(self, value)
|
||||
elif key == 'equation':
|
||||
check_consistency(value, (EquationInterface))
|
||||
InputPointsEquationCondition.__dict__[key].__set__(self, value)
|
||||
InputPointsEquationCondition.__dict__[key].__set__(self, value)
|
||||
elif key in ('_condition_type', '_problem', 'problem', 'condition_type'):
|
||||
super().__setattr__(key, value)
|
||||
@@ -26,4 +26,6 @@ class InputOutputPointsCondition(ConditionInterface):
|
||||
def __setattr__(self, key, value):
|
||||
if (key == 'input_points') or (key == 'output_points'):
|
||||
check_consistency(value, (LabelTensor, Graph, torch.Tensor))
|
||||
InputOutputPointsCondition.__dict__[key].__set__(self, value)
|
||||
InputOutputPointsCondition.__dict__[key].__set__(self, value)
|
||||
elif key in ('_condition_type', '_problem', 'problem', 'condition_type'):
|
||||
super().__setattr__(key, value)
|
||||
|
||||
@@ -77,7 +77,7 @@ class Difference(OperationInterface):
|
||||
5
|
||||
|
||||
"""
|
||||
if mode != self.sample_modes:
|
||||
if mode not in self.sample_modes:
|
||||
raise NotImplementedError(
|
||||
f"{mode} is not a valid mode for sampling."
|
||||
)
|
||||
|
||||
@@ -76,7 +76,7 @@ class Exclusion(OperationInterface):
|
||||
5
|
||||
|
||||
"""
|
||||
if mode != self.sample_modes:
|
||||
if mode not in self.sample_modes:
|
||||
raise NotImplementedError(
|
||||
f"{mode} is not a valid mode for sampling."
|
||||
)
|
||||
|
||||
@@ -78,7 +78,7 @@ class Intersection(OperationInterface):
|
||||
5
|
||||
|
||||
"""
|
||||
if mode != self.sample_modes:
|
||||
if mode not in self.sample_modes:
|
||||
raise NotImplementedError(
|
||||
f"{mode} is not a valid mode for sampling."
|
||||
)
|
||||
|
||||
@@ -92,13 +92,12 @@ class SimplexDomain(DomainInterface):
|
||||
"""
|
||||
|
||||
span_dict = {}
|
||||
|
||||
for i, coord in enumerate(self.variables):
|
||||
sorted_vertices = sorted(vertices, key=lambda vertex: vertex[i])
|
||||
sorted_vertices = torch.sort(vertices[coord].tensor.squeeze())
|
||||
# respective coord bounded by the lowest and highest values
|
||||
span_dict[coord] = [
|
||||
float(sorted_vertices[0][i]),
|
||||
float(sorted_vertices[-1][i]),
|
||||
float(sorted_vertices.values[0]),
|
||||
float(sorted_vertices.values[-1]),
|
||||
]
|
||||
|
||||
return CartesianDomain(span_dict)
|
||||
|
||||
@@ -41,7 +41,10 @@ class Union(OperationInterface):
|
||||
|
||||
@property
|
||||
def variables(self):
|
||||
return list(set([geom.variables for geom in self.geometries]))
|
||||
variables = []
|
||||
for geom in self.geometries:
|
||||
variables+=geom.variables
|
||||
return list(set(variables))
|
||||
|
||||
def is_inside(self, point, check_border=False):
|
||||
"""
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
""" Module for LabelTensor """
|
||||
|
||||
from copy import deepcopy, copy
|
||||
import torch
|
||||
from torch import Tensor
|
||||
|
||||
@@ -35,12 +35,22 @@ class LabelTensor(torch.Tensor):
|
||||
{1: {"name": "space"['a', 'b', 'c'])
|
||||
|
||||
"""
|
||||
self.dim_names = None
|
||||
self.labels = labels
|
||||
|
||||
@property
|
||||
def labels(self):
|
||||
"""Property decorator for labels
|
||||
|
||||
:return: labels of self
|
||||
:rtype: list
|
||||
"""
|
||||
return self._labels[self.tensor.ndim-1]['dof']
|
||||
|
||||
@property
|
||||
def full_labels(self):
|
||||
"""Property decorator for labels
|
||||
|
||||
:return: labels of self
|
||||
:rtype: list
|
||||
"""
|
||||
@@ -65,6 +75,13 @@ class LabelTensor(torch.Tensor):
|
||||
self.update_labels_from_list(labels)
|
||||
else:
|
||||
raise ValueError(f"labels must be list, dict or string.")
|
||||
self.set_names()
|
||||
|
||||
def set_names(self):
|
||||
labels = self.full_labels
|
||||
self.dim_names = {}
|
||||
for dim in range(self.tensor.ndim):
|
||||
self.dim_names[labels[dim]['name']] = dim
|
||||
|
||||
def extract(self, label_to_extract):
|
||||
"""
|
||||
@@ -76,46 +93,63 @@ class LabelTensor(torch.Tensor):
|
||||
:raises TypeError: Labels are not ``str``.
|
||||
:raises ValueError: Label to extract is not in the labels ``list``.
|
||||
"""
|
||||
from copy import deepcopy
|
||||
if isinstance(label_to_extract, (str, int)):
|
||||
label_to_extract = [label_to_extract]
|
||||
if isinstance(label_to_extract, (tuple, list)):
|
||||
last_dim_label = self._labels[self.tensor.ndim - 1]['dof']
|
||||
if set(label_to_extract).issubset(last_dim_label) is False:
|
||||
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
|
||||
idx_to_extract = [last_dim_label.index(i) for i in label_to_extract]
|
||||
new_tensor = self.tensor
|
||||
new_tensor = new_tensor[..., idx_to_extract]
|
||||
new_labels = deepcopy(self._labels)
|
||||
last_dim_new_label = {self.tensor.ndim - 1: {
|
||||
'dof': label_to_extract,
|
||||
'name': self._labels[self.tensor.ndim - 1]['name']
|
||||
}}
|
||||
new_labels.update(last_dim_new_label)
|
||||
return self._extract_from_list(label_to_extract)
|
||||
elif isinstance(label_to_extract, dict):
|
||||
new_labels = (deepcopy(self._labels))
|
||||
new_tensor = self.tensor
|
||||
for k, v in label_to_extract.items():
|
||||
idx_dim = None
|
||||
for kl, vl in self._labels.items():
|
||||
if vl['name'] == k:
|
||||
idx_dim = kl
|
||||
break
|
||||
dim_labels = self._labels[idx_dim]['dof']
|
||||
if isinstance(label_to_extract[k], (int, str)):
|
||||
label_to_extract[k] = [label_to_extract[k]]
|
||||
if set(label_to_extract[k]).issubset(dim_labels) is False:
|
||||
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
|
||||
idx_to_extract = [dim_labels.index(i) for i in label_to_extract[k]]
|
||||
indexer = [slice(None)] * idx_dim + [idx_to_extract] + [slice(None)] * (self.tensor.ndim - idx_dim - 1)
|
||||
new_tensor = new_tensor[indexer]
|
||||
dim_new_label = {idx_dim: {
|
||||
'dof': label_to_extract[k],
|
||||
'name': self._labels[idx_dim]['name']
|
||||
}}
|
||||
new_labels.update(dim_new_label)
|
||||
return self._extract_from_dict(label_to_extract)
|
||||
else:
|
||||
raise ValueError('labels_to_extract must be str or list or dict')
|
||||
|
||||
def _extract_from_list(self, labels_to_extract):
|
||||
#Store locally all necessary obj/variables
|
||||
ndim = self.tensor.ndim
|
||||
labels = self.full_labels
|
||||
tensor = self.tensor
|
||||
last_dim_label = self.labels
|
||||
|
||||
#Verify if all the labels in labels_to_extract are in last dimension
|
||||
if set(labels_to_extract).issubset(last_dim_label) is False:
|
||||
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
|
||||
|
||||
#Extract index to extract
|
||||
idx_to_extract = [last_dim_label.index(i) for i in labels_to_extract]
|
||||
|
||||
#Perform extraction
|
||||
new_tensor = tensor[..., idx_to_extract]
|
||||
|
||||
#Manage labels
|
||||
new_labels = copy(labels)
|
||||
|
||||
last_dim_new_label = {ndim - 1: {
|
||||
'dof': list(labels_to_extract),
|
||||
'name': labels[ndim - 1]['name']
|
||||
}}
|
||||
new_labels.update(last_dim_new_label)
|
||||
return LabelTensor(new_tensor, new_labels)
|
||||
|
||||
def _extract_from_dict(self, labels_to_extract):
|
||||
labels = self.full_labels
|
||||
tensor = self.tensor
|
||||
ndim = tensor.ndim
|
||||
new_labels = deepcopy(labels)
|
||||
new_tensor = tensor
|
||||
for k, _ in labels_to_extract.items():
|
||||
idx_dim = self.dim_names[k]
|
||||
dim_labels = labels[idx_dim]['dof']
|
||||
if isinstance(labels_to_extract[k], (int, str)):
|
||||
labels_to_extract[k] = [labels_to_extract[k]]
|
||||
if set(labels_to_extract[k]).issubset(dim_labels) is False:
|
||||
raise ValueError('Cannot extract a dof which is not in the original LabelTensor')
|
||||
idx_to_extract = [dim_labels.index(i) for i in labels_to_extract[k]]
|
||||
indexer = [slice(None)] * idx_dim + [idx_to_extract] + [slice(None)] * (ndim - idx_dim - 1)
|
||||
new_tensor = new_tensor[indexer]
|
||||
dim_new_label = {idx_dim: {
|
||||
'dof': labels_to_extract[k],
|
||||
'name': labels[idx_dim]['name']
|
||||
}}
|
||||
new_labels.update(dim_new_label)
|
||||
return LabelTensor(new_tensor, new_labels)
|
||||
|
||||
def __str__(self):
|
||||
@@ -147,32 +181,42 @@ class LabelTensor(torch.Tensor):
|
||||
return []
|
||||
if len(tensors) == 1:
|
||||
return tensors[0]
|
||||
n_dims = tensors[0].ndim
|
||||
new_labels_cat_dim = []
|
||||
for i in range(n_dims):
|
||||
name = tensors[0].labels[i]['name']
|
||||
if i != dim:
|
||||
dof = tensors[0].labels[i]['dof']
|
||||
for tensor in tensors:
|
||||
dof_to_check = tensor.labels[i]['dof']
|
||||
name_to_check = tensor.labels[i]['name']
|
||||
if dof != dof_to_check or name != name_to_check:
|
||||
raise ValueError('dimensions must have the same dof and name')
|
||||
else:
|
||||
for tensor in tensors:
|
||||
new_labels_cat_dim += tensor.labels[i]['dof']
|
||||
name_to_check = tensor.labels[i]['name']
|
||||
if name != name_to_check:
|
||||
raise ValueError('dimensions must have the same dof and name')
|
||||
new_labels_cat_dim = LabelTensor._check_validity_before_cat(tensors, dim)
|
||||
|
||||
# Perform cat on tensors
|
||||
new_tensor = torch.cat(tensors, dim=dim)
|
||||
labels = tensors[0].labels
|
||||
|
||||
#Update labels
|
||||
labels = tensors[0].full_labels
|
||||
labels.pop(dim)
|
||||
new_labels_cat_dim = new_labels_cat_dim if len(set(new_labels_cat_dim)) == len(new_labels_cat_dim) \
|
||||
else range(new_tensor.shape[dim])
|
||||
labels[dim] = {'dof': new_labels_cat_dim,
|
||||
'name': tensors[1].labels[dim]['name']}
|
||||
'name': tensors[1].full_labels[dim]['name']}
|
||||
return LabelTensor(new_tensor, labels)
|
||||
|
||||
@staticmethod
|
||||
def _check_validity_before_cat(tensors, dim):
|
||||
n_dims = tensors[0].ndim
|
||||
new_labels_cat_dim = []
|
||||
# Check if names and dof of the labels are the same in all dimensions except in dim
|
||||
for i in range(n_dims):
|
||||
name = tensors[0].full_labels[i]['name']
|
||||
if i != dim:
|
||||
dof = tensors[0].full_labels[i]['dof']
|
||||
for tensor in tensors:
|
||||
dof_to_check = tensor.full_labels[i]['dof']
|
||||
name_to_check = tensor.full_labels[i]['name']
|
||||
if dof != dof_to_check or name != name_to_check:
|
||||
raise ValueError('dimensions must have the same dof and name')
|
||||
else:
|
||||
for tensor in tensors:
|
||||
new_labels_cat_dim += tensor.full_labels[i]['dof']
|
||||
name_to_check = tensor.full_labels[i]['name']
|
||||
if name != name_to_check:
|
||||
raise ValueError('Dimensions to concatenate must have the same name')
|
||||
return new_labels_cat_dim
|
||||
|
||||
def requires_grad_(self, mode=True):
|
||||
lt = super().requires_grad_(mode)
|
||||
lt.labels = self._labels
|
||||
@@ -204,7 +248,6 @@ class LabelTensor(torch.Tensor):
|
||||
out = LabelTensor(super().clone(*args, **kwargs), self._labels)
|
||||
return out
|
||||
|
||||
|
||||
def init_labels(self):
|
||||
self._labels = {
|
||||
idx_: {
|
||||
@@ -221,13 +264,14 @@ class LabelTensor(torch.Tensor):
|
||||
:type labels: dict
|
||||
:raises ValueError: dof list contain duplicates or number of dof does not match with tensor shape
|
||||
"""
|
||||
|
||||
tensor_shape = self.tensor.shape
|
||||
#Check dimensionality
|
||||
for k, v in labels.items():
|
||||
if len(v['dof']) != len(set(v['dof'])):
|
||||
raise ValueError("dof must be unique")
|
||||
if len(v['dof']) != tensor_shape[k]:
|
||||
raise ValueError('Number of dof does not match with tensor dimension')
|
||||
#Perform update
|
||||
self._labels.update(labels)
|
||||
|
||||
def update_labels_from_list(self, labels):
|
||||
@@ -237,6 +281,7 @@ class LabelTensor(torch.Tensor):
|
||||
:param labels: The label(s) to update.
|
||||
:type labels: list
|
||||
"""
|
||||
# Create a dict with labels
|
||||
last_dim_labels = {self.tensor.ndim - 1: {'dof': labels, 'name': self.tensor.ndim - 1}}
|
||||
self.update_labels_from_dict(last_dim_labels)
|
||||
|
||||
@@ -246,26 +291,103 @@ class LabelTensor(torch.Tensor):
|
||||
raise ValueError('tensors list must not be empty')
|
||||
if len(tensors) == 1:
|
||||
return tensors[0]
|
||||
labels = tensors[0].labels
|
||||
# Collect all labels
|
||||
labels = tensors[0].full_labels
|
||||
# Check labels of all the tensors in each dimension
|
||||
for j in range(tensors[0].ndim):
|
||||
for i in range(1, len(tensors)):
|
||||
if labels[j] != tensors[i].labels[j]:
|
||||
if labels[j] != tensors[i].full_labels[j]:
|
||||
labels.pop(j)
|
||||
break
|
||||
|
||||
# Sum tensors
|
||||
data = torch.zeros(tensors[0].tensor.shape)
|
||||
for i in range(len(tensors)):
|
||||
data += tensors[i].tensor
|
||||
new_tensor = LabelTensor(data, labels)
|
||||
return new_tensor
|
||||
|
||||
def last_dim_dof(self):
|
||||
return self._labels[self.tensor.ndim - 1]['dof']
|
||||
|
||||
def append(self, tensor, mode='std'):
|
||||
print(self.labels)
|
||||
print(tensor.labels)
|
||||
if mode == 'std':
|
||||
# Call cat on last dimension
|
||||
new_label_tensor = LabelTensor.cat([self, tensor], dim=self.tensor.ndim - 1)
|
||||
|
||||
elif mode=='cross':
|
||||
# Crete tensor and call cat on last dimension
|
||||
tensor1 = self
|
||||
tensor2 = tensor
|
||||
n1 = tensor1.shape[0]
|
||||
n2 = tensor2.shape[0]
|
||||
tensor1 = LabelTensor(tensor1.repeat(n2, 1), labels=tensor1.labels)
|
||||
tensor2 = LabelTensor(tensor2.repeat_interleave(n1, dim=0), labels=tensor2.labels)
|
||||
new_label_tensor = LabelTensor.cat([tensor1, tensor2], dim=self.tensor.ndim-1)
|
||||
else:
|
||||
raise ValueError('mode must be either "std" or "cross"')
|
||||
return new_label_tensor
|
||||
|
||||
@staticmethod
|
||||
def vstack(label_tensors):
|
||||
"""
|
||||
Stack tensors vertically. For more details, see
|
||||
:meth:`torch.vstack`.
|
||||
|
||||
:param list(LabelTensor) label_tensors: the tensors to stack. They need
|
||||
to have equal labels.
|
||||
:return: the stacked tensor
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
return LabelTensor.cat(label_tensors, dim=0)
|
||||
|
||||
def __getitem__(self, index):
|
||||
"""
|
||||
Return a copy of the selected tensor.
|
||||
"""
|
||||
|
||||
if isinstance(index, str) or (isinstance(index, (tuple, list)) and all(isinstance(a, str) for a in index)):
|
||||
return self.extract(index)
|
||||
|
||||
selected_lt = super().__getitem__(index)
|
||||
|
||||
try:
|
||||
len_index = len(index)
|
||||
except TypeError:
|
||||
len_index = 1
|
||||
|
||||
if isinstance(index, int) or len_index == 1:
|
||||
if selected_lt.ndim == 1:
|
||||
selected_lt = selected_lt.reshape(1, -1)
|
||||
if hasattr(self, "labels"):
|
||||
new_labels = deepcopy(self.full_labels)
|
||||
new_labels.pop(0)
|
||||
selected_lt.labels = new_labels
|
||||
elif len(index) == self.tensor.ndim:
|
||||
new_labels = deepcopy(self.full_labels)
|
||||
if selected_lt.ndim == 1:
|
||||
selected_lt = selected_lt.reshape(-1, 1)
|
||||
for j in range(selected_lt.ndim):
|
||||
if hasattr(self, "labels"):
|
||||
if isinstance(index[j], list):
|
||||
new_labels.update({j: {'dof': [new_labels[j]['dof'][i] for i in index[1]],
|
||||
'name':new_labels[j]['name']}})
|
||||
else:
|
||||
new_labels.update({j: {'dof': new_labels[j]['dof'][index[j]],
|
||||
'name':new_labels[j]['name']}})
|
||||
|
||||
selected_lt.labels = new_labels
|
||||
else:
|
||||
new_labels = deepcopy(self.full_labels)
|
||||
new_labels.update({0: {'dof': list[index], 'name': new_labels[0]['name']}})
|
||||
selected_lt.labels = self.labels
|
||||
|
||||
return selected_lt
|
||||
|
||||
def sort_labels(self, dim=None):
|
||||
def argsort(lst):
|
||||
return sorted(range(len(lst)), key=lambda x: lst[x])
|
||||
if dim is None:
|
||||
dim = self.tensor.ndim-1
|
||||
labels = self.full_labels[dim]['dof']
|
||||
sorted_index = argsort(labels)
|
||||
indexer = [slice(None)] * self.tensor.ndim
|
||||
indexer[dim] = sorted_index
|
||||
new_labels = deepcopy(self.full_labels)
|
||||
new_labels[dim] = {'dof': sorted(labels), 'name': new_labels[dim]['name']}
|
||||
return LabelTensor(self.tensor[indexer], new_labels)
|
||||
@@ -1,13 +1,11 @@
|
||||
"""
|
||||
Module for operators vectorize implementation. Differential operators are used to write any differential problem.
|
||||
These operators are implemented to work on different accelerators: CPU, GPU, TPU or MPS.
|
||||
These operators are implemented to work on different accellerators: CPU, GPU, TPU or MPS.
|
||||
All operators take as input a tensor onto which computing the operator, a tensor with respect
|
||||
to which computing the operator, the name of the output variables to calculate the operator
|
||||
for (in case of multidimensional functions), and the variables name on which the operator is calculated.
|
||||
"""
|
||||
|
||||
import torch
|
||||
from copy import deepcopy
|
||||
from pina.label_tensor import LabelTensor
|
||||
|
||||
|
||||
@@ -49,12 +47,12 @@ def grad(output_, input_, components=None, d=None):
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
|
||||
if len(output_.labels[output_.tensor.ndim-1]['dof']) != 1:
|
||||
if len(output_.labels) != 1:
|
||||
raise RuntimeError("only scalar function can be differentiated")
|
||||
if not all([di in input_.labels[input_.tensor.ndim-1]['dof'] for di in d]):
|
||||
if not all([di in input_.labels for di in d]):
|
||||
raise RuntimeError("derivative labels missing from input tensor")
|
||||
|
||||
output_fieldname = output_.labels[output_.ndim-1]['dof'][0]
|
||||
output_fieldname = output_.labels[0]
|
||||
gradients = torch.autograd.grad(
|
||||
output_,
|
||||
input_,
|
||||
@@ -65,35 +63,37 @@ def grad(output_, input_, components=None, d=None):
|
||||
retain_graph=True,
|
||||
allow_unused=True,
|
||||
)[0]
|
||||
new_labels = deepcopy(input_.labels)
|
||||
gradients.labels = new_labels
|
||||
|
||||
gradients.labels = input_.labels
|
||||
gradients = gradients.extract(d)
|
||||
new_labels[input_.tensor.ndim - 1]['dof'] = [f"d{output_fieldname}d{i}" for i in d]
|
||||
gradients.labels = new_labels
|
||||
gradients.labels = [f"d{output_fieldname}d{i}" for i in d]
|
||||
|
||||
return gradients
|
||||
|
||||
if not isinstance(input_, LabelTensor):
|
||||
raise TypeError
|
||||
|
||||
if d is None:
|
||||
d = input_.labels[input_.tensor.ndim-1]['dof']
|
||||
d = input_.labels
|
||||
|
||||
if components is None:
|
||||
components = output_.labels[output_.tensor.ndim-1]['dof']
|
||||
components = output_.labels
|
||||
|
||||
if output_.shape[output_.ndim-1] == 1: # scalar output ################################
|
||||
if output_.shape[1] == 1: # scalar output ################################
|
||||
|
||||
if components != output_.labels[output_.tensor.ndim-1]['dof']:
|
||||
if components != output_.labels:
|
||||
raise RuntimeError
|
||||
gradients = grad_scalar_output(output_, input_, d)
|
||||
|
||||
elif output_.shape[output_.ndim-1] >= 2: # vector output ##############################
|
||||
elif output_.shape[output_.ndim - 1] >= 2: # vector output ##############################
|
||||
tensor_to_cat = []
|
||||
for i, c in enumerate(components):
|
||||
c_output = output_.extract([c])
|
||||
tensor_to_cat.append(grad_scalar_output(c_output, input_, d))
|
||||
gradients = LabelTensor.cat(tensor_to_cat, dim=output_.tensor.ndim-1)
|
||||
gradients = LabelTensor.cat(tensor_to_cat, dim=output_.tensor.ndim - 1)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return gradients
|
||||
|
||||
|
||||
@@ -124,30 +124,27 @@ def div(output_, input_, components=None, d=None):
|
||||
raise TypeError
|
||||
|
||||
if d is None:
|
||||
d = input_.labels[input_.tensor.ndim-1]['dof']
|
||||
d = input_.labels
|
||||
|
||||
if components is None:
|
||||
components = output_.labels[output_.tensor.ndim-1]['dof']
|
||||
components = output_.labels
|
||||
|
||||
if output_.shape[output_.ndim-1] < 2 or len(components) < 2:
|
||||
if output_.shape[1] < 2 or len(components) < 2:
|
||||
raise ValueError("div supported only for vector fields")
|
||||
|
||||
if len(components) != len(d):
|
||||
raise ValueError
|
||||
|
||||
grad_output = grad(output_, input_, components, d)
|
||||
last_dim_dof = [None] * len(components)
|
||||
to_sum_tensors = []
|
||||
labels = [None] * len(components)
|
||||
tensors_to_sum = []
|
||||
for i, (c, d) in enumerate(zip(components, d)):
|
||||
c_fields = f"d{c}d{d}"
|
||||
last_dim_dof[i] = c_fields
|
||||
to_sum_tensors.append(grad_output.extract(c_fields))
|
||||
|
||||
div = LabelTensor.summation(to_sum_tensors)
|
||||
new_labels = deepcopy(input_.labels)
|
||||
new_labels[input_.tensor.ndim-1]['dof'] = ["+".join(last_dim_dof)]
|
||||
div.labels = new_labels
|
||||
return div
|
||||
tensors_to_sum.append(grad_output.extract(c_fields))
|
||||
labels[i] = c_fields
|
||||
div_result = LabelTensor.summation(tensors_to_sum)
|
||||
div_result.labels = ["+".join(labels)]
|
||||
return div_result
|
||||
|
||||
|
||||
def laplacian(output_, input_, components=None, d=None, method="std"):
|
||||
@@ -201,10 +198,10 @@ def laplacian(output_, input_, components=None, d=None, method="std"):
|
||||
return result
|
||||
|
||||
if d is None:
|
||||
d = input_.labels[input_.tensor.ndim-1]['dof']
|
||||
d = input_.labels
|
||||
|
||||
if components is None:
|
||||
components = output_.labels[output_.tensor.ndim-1]['dof']
|
||||
components = output_.labels
|
||||
|
||||
if method == "divgrad":
|
||||
raise NotImplementedError("divgrad not implemented as method")
|
||||
@@ -217,9 +214,9 @@ def laplacian(output_, input_, components=None, d=None, method="std"):
|
||||
# result = scalar_laplace(output_, input_, components, d) # TODO check (from 0.1)
|
||||
grad_output = grad(output_, input_, components=components, d=d)
|
||||
to_append_tensors = []
|
||||
for i, label in enumerate(grad_output.labels[grad_output.ndim-1]['dof']):
|
||||
for i, label in enumerate(grad_output.labels):
|
||||
gg = grad(grad_output, input_, d=d, components=[label])
|
||||
to_append_tensors.append(gg.extract([gg.labels[gg.tensor.ndim-1]['dof'][i]]))
|
||||
to_append_tensors.append(gg.extract([gg.labels[i]]))
|
||||
labels = [f"dd{components[0]}"]
|
||||
result = LabelTensor.summation(tensors=to_append_tensors)
|
||||
result.labels = labels
|
||||
@@ -236,21 +233,27 @@ def laplacian(output_, input_, components=None, d=None, method="std"):
|
||||
|
||||
# result = result.as_subclass(LabelTensor)
|
||||
# result.labels = labels
|
||||
result = torch.empty(
|
||||
input_.shape[0], len(components), device=output_.device
|
||||
)
|
||||
labels = [None] * len(components)
|
||||
to_append_tensors = [None] * len(components)
|
||||
for idx, (ci, di) in enumerate(zip(components, d)):
|
||||
|
||||
if not isinstance(ci, list):
|
||||
ci = [ci]
|
||||
if not isinstance(di, list):
|
||||
di = [di]
|
||||
|
||||
grad_output = grad(output_, input_, components=ci, d=di)
|
||||
result[:, idx] = grad(grad_output, input_, d=di).flatten()
|
||||
to_append_tensors[idx] = grad(grad_output, input_, d=di)
|
||||
labels[idx] = f"dd{ci[0]}dd{di[0]}"
|
||||
result = LabelTensor.cat(tensors=to_append_tensors, dim=output_.tensor.ndim-1)
|
||||
result.labels = labels
|
||||
return result
|
||||
|
||||
# TODO Fix advection operator
|
||||
|
||||
def advection(output_, input_, velocity_field, components=None, d=None):
|
||||
"""
|
||||
Perform advection operation. The operator works for vectorial functions,
|
||||
@@ -272,10 +275,10 @@ def advection(output_, input_, velocity_field, components=None, d=None):
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
if d is None:
|
||||
d = input_.labels[input_.tensor.ndim-1]['dof']
|
||||
d = input_.labels
|
||||
|
||||
if components is None:
|
||||
components = output_.labels[output_.tensor.ndim-1]['dof']
|
||||
components = output_.labels
|
||||
|
||||
tmp = (
|
||||
grad(output_, input_, components, d)
|
||||
|
||||
@@ -36,7 +36,15 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
|
||||
@property
|
||||
def input_pts(self):
|
||||
return self.collector.data_collections
|
||||
to_return = {}
|
||||
for k, v in self.collector.data_collections.items():
|
||||
if 'input_points' in v.keys():
|
||||
to_return[k] = v['input_points']
|
||||
return to_return
|
||||
|
||||
@property
|
||||
def _have_sampled_points(self):
|
||||
return self.collector.is_conditions_ready
|
||||
|
||||
def __deepcopy__(self, memo):
|
||||
"""
|
||||
@@ -165,3 +173,6 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
|
||||
# store data
|
||||
self.collector.store_sample_domains(n, mode, variables, locations)
|
||||
|
||||
def add_points(self, new_points_dict):
|
||||
self.collector.add_points(new_points_dict)
|
||||
|
||||
Reference in New Issue
Block a user