fix rendering part 2
This commit is contained in:
@@ -52,13 +52,14 @@ class SupervisedSolver(SingleSolverInterface):
|
||||
:param AbstractProblem problem: The problem to be solved.
|
||||
:param torch.nn.Module model: The neural network model to be used.
|
||||
:param torch.nn.Module loss: The loss function to be minimized.
|
||||
If `None`, the Mean Squared Error (MSE) loss is used.
|
||||
If `None`, the :class:`torch.nn.MSELoss` loss is used.
|
||||
Default is `None`.
|
||||
:param torch.optim.Optimizer optimizer: The optimizer to be used.
|
||||
If `None`, the Adam optimizer is used. Default is ``None``.
|
||||
:param torch.optim.LRScheduler scheduler: Learning rate scheduler.
|
||||
If `None`, the constant learning rate scheduler is used.
|
||||
:param Optimizer optimizer: The optimizer to be used.
|
||||
If `None`, the :class:`torch.optim.Adam` optimizer is used.
|
||||
Default is ``None``.
|
||||
:param Scheduler scheduler: Learning rate scheduler.
|
||||
If `None`, the :class:`torch.optim.lr_scheduler.ConstantLR`
|
||||
scheduler is used. Default is ``None``.
|
||||
:param WeightingInterface weighting: The weighting schema to be used.
|
||||
If `None`, no weighting schema is used. Default is ``None``.
|
||||
:param bool use_lt: If ``True``, the solver uses LabelTensors as input.
|
||||
@@ -86,10 +87,11 @@ class SupervisedSolver(SingleSolverInterface):
|
||||
"""
|
||||
The optimization cycle for the solvers.
|
||||
|
||||
:param list[tuple[str, dict]] batch: The batch element in the dataloader.
|
||||
:return: The computed loss for the all conditions in the batch, casted
|
||||
to a subclass of `torch.Tensor`. It should return a dict containing
|
||||
the condition name and the associated scalar loss.
|
||||
:param list[tuple[str, dict]] batch: A batch of data. Each element is a
|
||||
tuple containing a condition name and a dictionary of points.
|
||||
:return: The losses computed for all conditions in the batch, casted
|
||||
to a subclass of :class:`torch.Tensor`. It should return a dict
|
||||
containing the condition name and the associated scalar loss.
|
||||
:rtype: dict
|
||||
"""
|
||||
condition_loss = {}
|
||||
|
||||
Reference in New Issue
Block a user