Add Supervised Problem (#451)
* Add SuperviedProblem class in problem zoo
This commit is contained in:
committed by
Nicola Demo
parent
c6f1aafdec
commit
780c4921eb
@@ -1,5 +1,8 @@
|
||||
__all__ = [
|
||||
'Poisson2DSquareProblem'
|
||||
'Poisson2DSquareProblem',
|
||||
'SupervisedProblem'
|
||||
|
||||
]
|
||||
|
||||
from .poisson_2d_square import Poisson2DSquareProblem
|
||||
from .supervised_problem import SupervisedProblem
|
||||
37
pina/problem/zoo/supervised_problem.py
Normal file
37
pina/problem/zoo/supervised_problem.py
Normal file
@@ -0,0 +1,37 @@
|
||||
from pina.problem import AbstractProblem
|
||||
from pina import Condition
|
||||
from pina import Graph
|
||||
|
||||
class SupervisedProblem(AbstractProblem):
|
||||
"""
|
||||
A problem definition for supervised learning in PINA.
|
||||
|
||||
This class allows an easy and straightforward definition of a Supervised problem,
|
||||
based on a single condition of type `InputOutputPointsCondition`
|
||||
|
||||
:Example:
|
||||
>>> import torch
|
||||
>>> input_data = torch.rand((100, 10))
|
||||
>>> output_data = torch.rand((100, 10))
|
||||
>>> problem = SupervisedProblem(input_data, output_data)
|
||||
"""
|
||||
conditions = dict()
|
||||
output_variables = None
|
||||
|
||||
def __init__(self, input_, output_):
|
||||
"""
|
||||
Initialize the SupervisedProblem class
|
||||
|
||||
:param input_: Input data of the problem
|
||||
:type input_: torch.Tensor | Graph
|
||||
:param output_: Output data of the problem
|
||||
:type output_: torch.Tensor
|
||||
"""
|
||||
if isinstance(input_, Graph):
|
||||
input_ = input_.data
|
||||
self.conditions['data'] = Condition(
|
||||
input_points=input_,
|
||||
output_points = output_
|
||||
)
|
||||
super().__init__()
|
||||
|
||||
31
tests/test_problem_zoo/test_supervised_problem.py
Normal file
31
tests/test_problem_zoo/test_supervised_problem.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import torch
|
||||
from pina.problem import AbstractProblem
|
||||
from pina.condition import InputOutputPointsCondition
|
||||
from pina.problem.zoo.supervised_problem import SupervisedProblem
|
||||
from pina import RadiusGraph
|
||||
|
||||
def test_constructor():
|
||||
input_ = torch.rand((100,10))
|
||||
output_ = torch.rand((100,10))
|
||||
problem = SupervisedProblem(input_=input_, output_=output_)
|
||||
assert isinstance(problem, AbstractProblem)
|
||||
assert hasattr(problem, "conditions")
|
||||
assert isinstance(problem.conditions, dict)
|
||||
assert list(problem.conditions.keys()) == ['data']
|
||||
assert isinstance(problem.conditions['data'], InputOutputPointsCondition)
|
||||
|
||||
def test_constructor_graph():
|
||||
x = torch.rand((20,100,10))
|
||||
pos = torch.rand((20,100,2))
|
||||
input_ = RadiusGraph(
|
||||
x=x, pos=pos, r=.2, build_edge_attr=True
|
||||
)
|
||||
output_ = torch.rand((100,10))
|
||||
problem = SupervisedProblem(input_=input_, output_=output_)
|
||||
assert isinstance(problem, AbstractProblem)
|
||||
assert hasattr(problem, "conditions")
|
||||
assert isinstance(problem.conditions, dict)
|
||||
assert list(problem.conditions.keys()) == ['data']
|
||||
assert isinstance(problem.conditions['data'], InputOutputPointsCondition)
|
||||
assert isinstance(problem.conditions['data'].input_points, list)
|
||||
assert isinstance(problem.conditions['data'].output_points, torch.Tensor)
|
||||
Reference in New Issue
Block a user