committed by
GitHub
parent
6a4febb33a
commit
78ed2a67a2
11
tutorials/tutorial4/tutorial.py
vendored
11
tutorials/tutorial4/tutorial.py
vendored
@@ -2,6 +2,8 @@
|
||||
# coding: utf-8
|
||||
|
||||
# # Tutorial: Unstructured convolutional autoencoder via continuous convolution
|
||||
#
|
||||
# [](https://colab.research.google.com/github/mathLab/PINA/blob/master/tutorials/tutorial4/tutorial.ipynb)
|
||||
|
||||
# In this tutorial, we will show how to use the Continuous Convolutional Filter, and how to build common Deep Learning architectures with it. The implementation of the filter follows the original work [*A Continuous Convolutional Trainable Filter for Modelling Unstructured Data*](https://arxiv.org/abs/2210.13416).
|
||||
|
||||
@@ -10,6 +12,15 @@
|
||||
# In[1]:
|
||||
|
||||
|
||||
## routine needed to run the notebook on Google Colab
|
||||
try:
|
||||
import google.colab
|
||||
IN_COLAB = True
|
||||
except:
|
||||
IN_COLAB = False
|
||||
if IN_COLAB:
|
||||
get_ipython().system('pip install "pina-mathlab"')
|
||||
|
||||
import torch
|
||||
import matplotlib.pyplot as plt
|
||||
from pina.problem import AbstractProblem
|
||||
|
||||
Reference in New Issue
Block a user