Dev Update (#582)
* Fix adaptive refinement (#571) --------- Co-authored-by: Dario Coscia <93731561+dario-coscia@users.noreply.github.com> * Remove collector * Fixes * Fixes * rm unnecessary comment * fix advection (#581) * Fix tutorial .html link (#580) * fix problem data collection for v0.1 (#584) * Message Passing Module (#516) * add deep tensor network block * add interaction network block * add radial field network block * add schnet block * add equivariant network block * fix + tests + doc files * fix egnn + equivariance/invariance tests Co-authored-by: Dario Coscia <dariocos99@gmail.com> --------- Co-authored-by: giovanni <giovanni.canali98@yahoo.it> Co-authored-by: AleDinve <giuseppealessio.d@student.unisi.it> * add type checker (#527) --------- Co-authored-by: Filippo Olivo <filippo@filippoolivo.com> Co-authored-by: Giovanni Canali <115086358+GiovanniCanali@users.noreply.github.com> Co-authored-by: giovanni <giovanni.canali98@yahoo.it> Co-authored-by: AleDinve <giuseppealessio.d@student.unisi.it>
This commit is contained in:
@@ -2,13 +2,13 @@
|
||||
|
||||
__all__ = [
|
||||
"SwitchOptimizer",
|
||||
"R3Refinement",
|
||||
"MetricTracker",
|
||||
"PINAProgressBar",
|
||||
"LinearWeightUpdate",
|
||||
"R3Refinement",
|
||||
]
|
||||
|
||||
from .optimizer_callback import SwitchOptimizer
|
||||
from .adaptive_refinement_callback import R3Refinement
|
||||
from .processing_callback import MetricTracker, PINAProgressBar
|
||||
from .linear_weight_update_callback import LinearWeightUpdate
|
||||
from .refinement import R3Refinement
|
||||
|
||||
@@ -1,181 +0,0 @@
|
||||
"""Module for the R3Refinement callback."""
|
||||
|
||||
import importlib.metadata
|
||||
import torch
|
||||
from lightning.pytorch.callbacks import Callback
|
||||
from ..label_tensor import LabelTensor
|
||||
from ..utils import check_consistency
|
||||
|
||||
|
||||
class R3Refinement(Callback):
|
||||
"""
|
||||
PINA Implementation of an R3 Refinement Callback.
|
||||
"""
|
||||
|
||||
def __init__(self, sample_every):
|
||||
"""
|
||||
This callback implements the R3 (Retain-Resample-Release) routine for
|
||||
sampling new points based on adaptive search.
|
||||
The algorithm incrementally accumulates collocation points in regions
|
||||
of high PDE residuals, and releases those with low residuals.
|
||||
Points are sampled uniformly in all regions where sampling is needed.
|
||||
|
||||
.. seealso::
|
||||
|
||||
Original Reference: Daw, Arka, et al. *Mitigating Propagation
|
||||
Failures in Physics-informed Neural Networks
|
||||
using Retain-Resample-Release (R3) Sampling. (2023)*.
|
||||
DOI: `10.48550/arXiv.2207.02338
|
||||
<https://doi.org/10.48550/arXiv.2207.02338>`_
|
||||
|
||||
:param int sample_every: Frequency for sampling.
|
||||
:raises ValueError: If `sample_every` is not an integer.
|
||||
|
||||
Example:
|
||||
>>> r3_callback = R3Refinement(sample_every=5)
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
"R3Refinement callback is being refactored in the pina "
|
||||
f"{importlib.metadata.metadata('pina-mathlab')['Version']} "
|
||||
"version. Please use version 0.1 if R3Refinement is required."
|
||||
)
|
||||
|
||||
# super().__init__()
|
||||
|
||||
# # sample every
|
||||
# check_consistency(sample_every, int)
|
||||
# self._sample_every = sample_every
|
||||
# self._const_pts = None
|
||||
|
||||
# def _compute_residual(self, trainer):
|
||||
# """
|
||||
# Computes the residuals for a PINN object.
|
||||
|
||||
# :return: the total loss, and pointwise loss.
|
||||
# :rtype: tuple
|
||||
# """
|
||||
|
||||
# # extract the solver and device from trainer
|
||||
# solver = trainer.solver
|
||||
# device = trainer._accelerator_connector._accelerator_flag
|
||||
# precision = trainer.precision
|
||||
# if precision == "64-true":
|
||||
# precision = torch.float64
|
||||
# elif precision == "32-true":
|
||||
# precision = torch.float32
|
||||
# else:
|
||||
# raise RuntimeError(
|
||||
# "Currently R3Refinement is only implemented "
|
||||
# "for precision '32-true' and '64-true', set "
|
||||
# "Trainer precision to match one of the "
|
||||
# "available precisions."
|
||||
# )
|
||||
|
||||
# # compute residual
|
||||
# res_loss = {}
|
||||
# tot_loss = []
|
||||
# for location in self._sampling_locations:
|
||||
# condition = solver.problem.conditions[location]
|
||||
# pts = solver.problem.input_pts[location]
|
||||
# # send points to correct device
|
||||
# pts = pts.to(device=device, dtype=precision)
|
||||
# pts = pts.requires_grad_(True)
|
||||
# pts.retain_grad()
|
||||
# # PINN loss: equation evaluated only for sampling locations
|
||||
# target = condition.equation.residual(pts, solver.forward(pts))
|
||||
# res_loss[location] = torch.abs(target).as_subclass(torch.Tensor)
|
||||
# tot_loss.append(torch.abs(target))
|
||||
|
||||
# print(tot_loss)
|
||||
|
||||
# return torch.vstack(tot_loss), res_loss
|
||||
|
||||
# def _r3_routine(self, trainer):
|
||||
# """
|
||||
# R3 refinement main routine.
|
||||
|
||||
# :param Trainer trainer: PINA Trainer.
|
||||
# """
|
||||
# # compute residual (all device possible)
|
||||
# tot_loss, res_loss = self._compute_residual(trainer)
|
||||
# tot_loss = tot_loss.as_subclass(torch.Tensor)
|
||||
|
||||
# # !!!!!! From now everything is performed on CPU !!!!!!
|
||||
|
||||
# # average loss
|
||||
# avg = (tot_loss.mean()).to("cpu")
|
||||
# old_pts = {} # points to be retained
|
||||
# for location in self._sampling_locations:
|
||||
# pts = trainer._model.problem.input_pts[location]
|
||||
# labels = pts.labels
|
||||
# pts = pts.cpu().detach().as_subclass(torch.Tensor)
|
||||
# residuals = res_loss[location].cpu()
|
||||
# mask = (residuals > avg).flatten()
|
||||
# if any(mask): # append residuals greater than average
|
||||
# pts = (pts[mask]).as_subclass(LabelTensor)
|
||||
# pts.labels = labels
|
||||
# old_pts[location] = pts
|
||||
# numb_pts = self._const_pts[location] - len(old_pts[location])
|
||||
# # sample new points
|
||||
# trainer._model.problem.discretise_domain(
|
||||
# numb_pts, "random", locations=[location]
|
||||
# )
|
||||
|
||||
# else: # if no res greater than average, samples all uniformly
|
||||
# numb_pts = self._const_pts[location]
|
||||
# # sample new points
|
||||
# trainer._model.problem.discretise_domain(
|
||||
# numb_pts, "random", locations=[location]
|
||||
# )
|
||||
# # adding previous population points
|
||||
# trainer._model.problem.add_points(old_pts)
|
||||
|
||||
# # update dataloader
|
||||
# trainer._create_or_update_loader()
|
||||
|
||||
# def on_train_start(self, trainer, _):
|
||||
# """
|
||||
# Callback function called at the start of training.
|
||||
|
||||
# This method extracts the locations for sampling from the problem
|
||||
# conditions and calculates the total population.
|
||||
|
||||
# :param trainer: The trainer object managing the training process.
|
||||
# :type trainer: pytorch_lightning.Trainer
|
||||
# :param _: Placeholder argument (not used).
|
||||
|
||||
# :return: None
|
||||
# :rtype: None
|
||||
# """
|
||||
# # extract locations for sampling
|
||||
# problem = trainer.solver.problem
|
||||
# locations = []
|
||||
# for condition_name in problem.conditions:
|
||||
# condition = problem.conditions[condition_name]
|
||||
# if hasattr(condition, "location"):
|
||||
# locations.append(condition_name)
|
||||
# self._sampling_locations = locations
|
||||
|
||||
# # extract total population
|
||||
# const_pts = {} # for each location, store the pts to keep constant
|
||||
# for location in self._sampling_locations:
|
||||
# pts = trainer._model.problem.input_pts[location]
|
||||
# const_pts[location] = len(pts)
|
||||
# self._const_pts = const_pts
|
||||
|
||||
# def on_train_epoch_end(self, trainer, __):
|
||||
# """
|
||||
# Callback function called at the end of each training epoch.
|
||||
|
||||
# This method triggers the R3 routine for refinement if the current
|
||||
# epoch is a multiple of `_sample_every`.
|
||||
|
||||
# :param trainer: The trainer object managing the training process.
|
||||
# :type trainer: pytorch_lightning.Trainer
|
||||
# :param __: Placeholder argument (not used).
|
||||
|
||||
# :return: None
|
||||
# :rtype: None
|
||||
# """
|
||||
# if trainer.current_epoch % self._sample_every == 0:
|
||||
# self._r3_routine(trainer)
|
||||
11
pina/callback/refinement/__init__.py
Normal file
11
pina/callback/refinement/__init__.py
Normal file
@@ -0,0 +1,11 @@
|
||||
"""
|
||||
Module for Pina Refinement callbacks.
|
||||
"""
|
||||
|
||||
__all__ = [
|
||||
"RefinementInterface",
|
||||
"R3Refinement",
|
||||
]
|
||||
|
||||
from .refinement_interface import RefinementInterface
|
||||
from .r3_refinement import R3Refinement
|
||||
88
pina/callback/refinement/r3_refinement.py
Normal file
88
pina/callback/refinement/r3_refinement.py
Normal file
@@ -0,0 +1,88 @@
|
||||
"""Module for the R3Refinement callback."""
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn.modules.loss import _Loss
|
||||
from .refinement_interface import RefinementInterface
|
||||
from ...label_tensor import LabelTensor
|
||||
from ...utils import check_consistency
|
||||
from ...loss import LossInterface
|
||||
|
||||
|
||||
class R3Refinement(RefinementInterface):
|
||||
"""
|
||||
PINA Implementation of an R3 Refinement Callback.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, sample_every, residual_loss=nn.L1Loss, condition_to_update=None
|
||||
):
|
||||
"""
|
||||
This callback implements the R3 (Retain-Resample-Release) routine for
|
||||
sampling new points based on adaptive search.
|
||||
The algorithm incrementally accumulates collocation points in regions
|
||||
of high PDE residuals, and releases those with low residuals.
|
||||
Points are sampled uniformly in all regions where sampling is needed.
|
||||
|
||||
.. seealso::
|
||||
|
||||
Original Reference: Daw, Arka, et al. *Mitigating Propagation
|
||||
Failures in Physics-informed Neural Networks
|
||||
using Retain-Resample-Release (R3) Sampling. (2023)*.
|
||||
DOI: `10.48550/arXiv.2207.02338
|
||||
<https://doi.org/10.48550/arXiv.2207.02338>`_
|
||||
|
||||
:param int sample_every: Frequency for sampling.
|
||||
:param loss: Loss function
|
||||
:type loss: LossInterface | ~torch.nn.modules.loss._Loss
|
||||
:param condition_to_update: The conditions to update during the
|
||||
refinement process. If None, all conditions with a conditions will
|
||||
be updated. Default is None.
|
||||
:type condition_to_update: list(str) | tuple(str) | str
|
||||
:raises ValueError: If the condition_to_update is not a string or
|
||||
iterable of strings.
|
||||
:raises TypeError: If the residual_loss is not a subclass of
|
||||
torch.nn.Module.
|
||||
|
||||
|
||||
Example:
|
||||
>>> r3_callback = R3Refinement(sample_every=5)
|
||||
"""
|
||||
super().__init__(sample_every, condition_to_update)
|
||||
# check consistency loss
|
||||
check_consistency(residual_loss, (LossInterface, _Loss), subclass=True)
|
||||
self.loss_fn = residual_loss(reduction="none")
|
||||
|
||||
def sample(self, current_points, condition_name, solver):
|
||||
"""
|
||||
Sample new points based on the R3 refinement strategy.
|
||||
|
||||
:param current_points: Current points in the domain.
|
||||
:param condition_name: Name of the condition to update.
|
||||
:param PINNInterface solver: The solver object.
|
||||
:return: New points sampled based on the R3 strategy.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
# Compute residuals for the given condition (average over fields)
|
||||
condition = solver.problem.conditions[condition_name]
|
||||
target = solver.compute_residual(
|
||||
current_points.requires_grad_(True), condition.equation
|
||||
)
|
||||
residuals = self.loss_fn(target, torch.zeros_like(target)).mean(
|
||||
dim=tuple(range(1, target.ndim))
|
||||
)
|
||||
|
||||
# Prepare new points
|
||||
labels = current_points.labels
|
||||
domain_name = solver.problem.conditions[condition_name].domain
|
||||
domain = solver.problem.domains[domain_name]
|
||||
num_old_points = self.initial_population_size[condition_name]
|
||||
mask = (residuals > residuals.mean()).flatten()
|
||||
|
||||
if mask.any(): # Use high-residual points
|
||||
pts = current_points[mask]
|
||||
pts.labels = labels
|
||||
retain_pts = len(pts)
|
||||
samples = domain.sample(num_old_points - retain_pts, "random")
|
||||
return LabelTensor.cat([pts, samples])
|
||||
return domain.sample(num_old_points, "random")
|
||||
155
pina/callback/refinement/refinement_interface.py
Normal file
155
pina/callback/refinement/refinement_interface.py
Normal file
@@ -0,0 +1,155 @@
|
||||
"""
|
||||
RefinementInterface class for handling the refinement of points in a neural
|
||||
network training process.
|
||||
"""
|
||||
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from lightning.pytorch import Callback
|
||||
from ...utils import check_consistency
|
||||
from ...solver.physics_informed_solver import PINNInterface
|
||||
|
||||
|
||||
class RefinementInterface(Callback, metaclass=ABCMeta):
|
||||
"""
|
||||
Interface class of Refinement approaches.
|
||||
"""
|
||||
|
||||
def __init__(self, sample_every, condition_to_update=None):
|
||||
"""
|
||||
Initializes the RefinementInterface.
|
||||
|
||||
:param int sample_every: The number of epochs between each refinement.
|
||||
:param condition_to_update: The conditions to update during the
|
||||
refinement process. If None, all conditions with a domain will be
|
||||
updated. Default is None.
|
||||
:type condition_to_update: list(str) | tuple(str) | str
|
||||
|
||||
"""
|
||||
# check consistency of the input
|
||||
check_consistency(sample_every, int)
|
||||
if condition_to_update is not None:
|
||||
if isinstance(condition_to_update, str):
|
||||
condition_to_update = [condition_to_update]
|
||||
if not isinstance(condition_to_update, (list, tuple)):
|
||||
raise ValueError(
|
||||
"'condition_to_update' must be iter of strings."
|
||||
)
|
||||
check_consistency(condition_to_update, str)
|
||||
# store
|
||||
self.sample_every = sample_every
|
||||
self._condition_to_update = condition_to_update
|
||||
self._dataset = None
|
||||
self._initial_population_size = None
|
||||
|
||||
def on_train_start(self, trainer, solver):
|
||||
"""
|
||||
Called when the training begins. It initializes the conditions and
|
||||
dataset.
|
||||
|
||||
:param ~lightning.pytorch.trainer.trainer.Trainer trainer: The trainer
|
||||
object.
|
||||
:param ~pina.solver.solver.SolverInterface solver: The solver
|
||||
object associated with the trainer.
|
||||
:raises RuntimeError: If the solver is not a PINNInterface.
|
||||
:raises RuntimeError: If the conditions do not have a domain to sample
|
||||
from.
|
||||
"""
|
||||
# check we have valid conditions names
|
||||
if self._condition_to_update is None:
|
||||
self._condition_to_update = [
|
||||
name
|
||||
for name, cond in solver.problem.conditions.items()
|
||||
if hasattr(cond, "domain")
|
||||
]
|
||||
|
||||
for cond in self._condition_to_update:
|
||||
if cond not in solver.problem.conditions:
|
||||
raise RuntimeError(
|
||||
f"Condition '{cond}' not found in "
|
||||
f"{list(solver.problem.conditions.keys())}."
|
||||
)
|
||||
if not hasattr(solver.problem.conditions[cond], "domain"):
|
||||
raise RuntimeError(
|
||||
f"Condition '{cond}' does not contain a domain to "
|
||||
"sample from."
|
||||
)
|
||||
# check solver
|
||||
if not isinstance(solver, PINNInterface):
|
||||
raise RuntimeError(
|
||||
"Refinment strategies are currently implemented only "
|
||||
"for physics informed based solvers. Please use a Solver "
|
||||
"inheriting from 'PINNInterface'."
|
||||
)
|
||||
# store dataset
|
||||
self._dataset = trainer.datamodule.train_dataset
|
||||
# compute initial population size
|
||||
self._initial_population_size = self._compute_population_size(
|
||||
self._condition_to_update
|
||||
)
|
||||
return super().on_train_epoch_start(trainer, solver)
|
||||
|
||||
def on_train_epoch_end(self, trainer, solver):
|
||||
"""
|
||||
Performs the refinement at the end of each training epoch (if needed).
|
||||
|
||||
:param ~lightning.pytorch.trainer.trainer.Trainer: The trainer object.
|
||||
:param PINNInterface solver: The solver object.
|
||||
"""
|
||||
if (trainer.current_epoch % self.sample_every == 0) and (
|
||||
trainer.current_epoch != 0
|
||||
):
|
||||
self._update_points(solver)
|
||||
return super().on_train_epoch_end(trainer, solver)
|
||||
|
||||
@abstractmethod
|
||||
def sample(self, current_points, condition_name, solver):
|
||||
"""
|
||||
Samples new points based on the condition.
|
||||
|
||||
:param current_points: Current points in the domain.
|
||||
:param condition_name: Name of the condition to update.
|
||||
:param PINNInterface solver: The solver object.
|
||||
:return: New points sampled based on the R3 strategy.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
|
||||
@property
|
||||
def dataset(self):
|
||||
"""
|
||||
Returns the dataset for training.
|
||||
"""
|
||||
return self._dataset
|
||||
|
||||
@property
|
||||
def initial_population_size(self):
|
||||
"""
|
||||
Returns the dataset for training size.
|
||||
"""
|
||||
return self._initial_population_size
|
||||
|
||||
def _update_points(self, solver):
|
||||
"""
|
||||
Performs the refinement of the points.
|
||||
|
||||
:param PINNInterface solver: The solver object.
|
||||
"""
|
||||
new_points = {}
|
||||
for name in self._condition_to_update:
|
||||
current_points = self.dataset.conditions_dict[name]["input"]
|
||||
new_points[name] = {
|
||||
"input": self.sample(current_points, name, solver)
|
||||
}
|
||||
self.dataset.update_data(new_points)
|
||||
|
||||
def _compute_population_size(self, conditions):
|
||||
"""
|
||||
Computes the number of points in the dataset for each condition.
|
||||
|
||||
:param conditions: List of conditions to compute the number of points.
|
||||
:return: Dictionary with the population size for each condition.
|
||||
:rtype: dict
|
||||
"""
|
||||
return {
|
||||
cond: len(self.dataset.conditions_dict[cond]["input"])
|
||||
for cond in conditions
|
||||
}
|
||||
Reference in New Issue
Block a user