preliminary modifications for N-S

This commit is contained in:
Anna Ivagnes
2022-05-05 17:12:31 +02:00
parent d152fe67e3
commit 8130912926
13 changed files with 213 additions and 162 deletions

View File

@@ -3,7 +3,8 @@ import torch
import torch.nn as nn
from pina.label_tensor import LabelTensor
import warnings
import copy
class DeepONet(torch.nn.Module):
"""
@@ -18,7 +19,7 @@ class DeepONet(torch.nn.Module):
<https://doi.org/10.1038/s42256-021-00302-5>`_
"""
def __init__(self, branch_net, trunk_net, output_variables):
def __init__(self, branch_net, trunk_net, output_variables, inner_size=10):
"""
:param torch.nn.Module branch_net: the neural network to use as branch
model. It has to take as input a :class:`LabelTensor`. The number
@@ -43,7 +44,7 @@ class DeepONet(torch.nn.Module):
(1): Tanh()
(2): Linear(in_features=20, out_features=20, bias=True)
(3): Tanh()
(4): Linear(in_features=20, out_features=10, bias=True)
(4): Linear(in_features=20, out_features=20, bias=True)
)
)
(branch_net): FeedForward(
@@ -53,20 +54,27 @@ class DeepONet(torch.nn.Module):
(1): Tanh()
(2): Linear(in_features=20, out_features=20, bias=True)
(3): Tanh()
(4): Linear(in_features=20, out_features=10, bias=True)
(4): Linear(in_features=20, out_features=20, bias=True)
)
)
)
"""
super().__init__()
self.output_variables = output_variables
self.output_dimension = len(output_variables)
self.trunk_net = trunk_net
self.branch_net = branch_net
self.output_variables = output_variables
self.output_dimension = len(output_variables)
if self.output_dimension > 1:
raise NotImplementedError('Vectorial DeepONet to be implemented')
if isinstance(self.branch_net.output_variables, int) and isinstance(self.branch_net.output_variables, int):
if self.branch_net.output_dimension == self.trunk_net.output_dimension:
self.inner_size = self.branch_net.output_dimension
else:
raise ValueError('Branch and trunk networks have not the same output dimension.')
else:
warnings.warn("The output dimension of the branch and trunk networks has been imposed by default as 10 for each output variable. To set it change the output_variable of networks to an integer.")
self.inner_size = self.output_dimension*inner_size
@property
def input_variables(self):
@@ -82,10 +90,16 @@ class DeepONet(torch.nn.Module):
:rtype: LabelTensor
"""
branch_output = self.branch_net(
x.extract(self.branch_net.input_variables))
x.extract(self.branch_net.input_variables))
trunk_output = self.trunk_net(
x.extract(self.trunk_net.input_variables))
output_ = torch.sum(branch_output * trunk_output, dim=1).reshape(-1, 1)
return LabelTensor(output_, self.output_variables)
x.extract(self.trunk_net.input_variables))
local_size = int(self.inner_size/self.output_dimension)
for i, var in enumerate(self.output_variables):
start = i*local_size
stop = (i+1)*local_size
local_output = LabelTensor(torch.sum(branch_output[:, start:stop] * trunk_output[:, start:stop], dim=1).reshape(-1, 1), var)
if i==0:
output_ = local_output
else:
output_ = output_.append(local_output)
return output_