Fourier Block and minor fixes

* Adding fourier block 1d/2d/3d
* Adding docs to SpectralConvBlock1D/2D/3D and to FourierBlock1D/2D/3D
* Adding tests for fourier block
This commit is contained in:
Dario Coscia
2023-09-07 18:18:28 +02:00
committed by Nicola Demo
parent 2bf42d5fea
commit 83ecdb0eab
4 changed files with 228 additions and 24 deletions

View File

@@ -12,14 +12,18 @@ class SpectralConvBlock1D(nn.Module):
def __init__(self, input_numb_fields, output_numb_fields, n_modes):
"""
TODO
PINA implementation of spectral convolution. The module computes
the spectral convolution of the input with a linear kernel in the
fourier space, and then it maps the input back to the physical
space.
:param input_numb_fields: _description_
:type input_numb_fields: _type_
:param output_numb_fields: _description_
:type output_numb_fields: _type_
:param n_modes: _description_
:type n_modes: _type_
The block expects an input of size ``[batch, input_numb_fields, N]``
and returns an output of size ``[batch, output_numb_fields, N]``.
:param int input_numb_fields: The number of channels for the input.
:param int output_numb_fields: The number of channels for the output.
:param int n_modes: Number of modes to select, it must be at most equal
to the ``floor(N/2)+1``.
"""
super().__init__()
@@ -69,9 +73,6 @@ class SpectralConvBlock1D(nn.Module):
"""
batch_size = x.shape[0]
# if x.shape[-1] // 2 + 1 < self._modes:
# raise RuntimeError('Number of modes is too high, decrease number of modes.')
# Compute Fourier transform of the input
x_ft = torch.fft.rfft(x)
@@ -95,6 +96,20 @@ class SpectralConvBlock2D(nn.Module):
"""
def __init__(self, input_numb_fields, output_numb_fields, n_modes):
"""
PINA implementation of spectral convolution. The module computes
the spectral convolution of the input with a linear kernel in the
fourier space, and then it maps the input back to the physical
space.
The block expects an input of size ``[batch, input_numb_fields, Nx, Ny]``
and returns an output of size ``[batch, output_numb_fields, Nx, Ny]``.
:param int input_numb_fields: The number of channels for the input.
:param int output_numb_fields: The number of channels for the output.
:param list | tuple n_modes: Number of modes to select for each dimension.
It must be at most equal to the ``floor(Nx/2)+1`` and ``floor(Ny/2)+1``.
"""
super().__init__()
# check type consistency
@@ -188,16 +203,19 @@ class SpectralConvBlock3D(nn.Module):
def __init__(self, input_numb_fields, output_numb_fields, n_modes):
"""
TODO
PINA implementation of spectral convolution. The module computes
the spectral convolution of the input with a linear kernel in the
fourier space, and then it maps the input back to the physical
space.
:param input_numb_fields: _description_
:type input_numb_fields: _type_
:param output_numb_fields: _description_
:type output_numb_fields: _type_
:param n_modes: _description_
:type n_modes: _type_
:raises ValueError: _description_
:raises ValueError: _description_
The block expects an input of size ``[batch, input_numb_fields, Nx, Ny, Nz]``
and returns an output of size ``[batch, output_numb_fields, Nx, Ny, Nz]``.
:param int input_numb_fields: The number of channels for the input.
:param int output_numb_fields: The number of channels for the output.
:param list | tuple n_modes: Number of modes to select for each dimension.
It must be at most equal to the ``floor(Nx/2)+1``, ``floor(Ny/2)+1``
and ``floor(Nz/2)+1``.
"""
super().__init__()