fix tests

This commit is contained in:
FilippoOlivo
2025-11-13 17:03:31 +01:00
parent 0ee63686dd
commit 8440a672a7
5 changed files with 289 additions and 300 deletions

View File

@@ -1,10 +1,11 @@
import torch
import pytest
from pina.data import PinaDataModule
from pina.data.dataset import PinaTensorDataset, PinaGraphDataset
from pina.data.dataset import PinaDataset
from pina.problem.zoo import SupervisedProblem
from pina.graph import RadiusGraph
from pina.data.data_module import DummyDataloader
from pina.data.dataloader import DummyDataloader, PinaDataLoader
from pina import Trainer
from pina.solver import SupervisedSolver
from torch_geometric.data import Batch
@@ -44,22 +45,33 @@ def test_setup_train(input_, output_, train_size, val_size, test_size):
)
dm.setup()
assert hasattr(dm, "train_dataset")
if isinstance(input_, torch.Tensor):
assert isinstance(dm.train_dataset, PinaTensorDataset)
else:
assert isinstance(dm.train_dataset, PinaGraphDataset)
# assert len(dm.train_dataset) == int(len(input_) * train_size)
assert isinstance(dm.train_dataset, dict)
assert all(
isinstance(dm.train_dataset[cond], PinaDataset)
for cond in dm.train_dataset
)
assert all(
dm.train_dataset[cond].is_graph_dataset == isinstance(input_, list)
for cond in dm.train_dataset
)
assert all(
len(dm.train_dataset[cond]) == int(len(input_) * train_size)
for cond in dm.train_dataset
)
if test_size > 0:
assert hasattr(dm, "test_dataset")
assert dm.test_dataset is None
else:
assert not hasattr(dm, "test_dataset")
assert hasattr(dm, "val_dataset")
if isinstance(input_, torch.Tensor):
assert isinstance(dm.val_dataset, PinaTensorDataset)
else:
assert isinstance(dm.val_dataset, PinaGraphDataset)
# assert len(dm.val_dataset) == int(len(input_) * val_size)
assert isinstance(dm.val_dataset, dict)
assert all(
isinstance(dm.val_dataset[cond], PinaDataset) for cond in dm.val_dataset
)
assert all(
isinstance(dm.val_dataset[cond], PinaDataset) for cond in dm.val_dataset
)
@pytest.mark.parametrize(
@@ -87,49 +99,59 @@ def test_setup_test(input_, output_, train_size, val_size, test_size):
assert not hasattr(dm, "val_dataset")
assert hasattr(dm, "test_dataset")
if isinstance(input_, torch.Tensor):
assert isinstance(dm.test_dataset, PinaTensorDataset)
else:
assert isinstance(dm.test_dataset, PinaGraphDataset)
# assert len(dm.test_dataset) == int(len(input_) * test_size)
@pytest.mark.parametrize(
"input_, output_",
[(input_tensor, output_tensor), (input_graph, output_graph)],
)
def test_dummy_dataloader(input_, output_):
problem = SupervisedProblem(input_=input_, output_=output_)
solver = SupervisedSolver(problem=problem, model=torch.nn.Linear(10, 10))
trainer = Trainer(
solver, batch_size=None, train_size=0.7, val_size=0.3, test_size=0.0
assert all(
isinstance(dm.test_dataset[cond], PinaDataset)
for cond in dm.test_dataset
)
assert all(
dm.test_dataset[cond].is_graph_dataset == isinstance(input_, list)
for cond in dm.test_dataset
)
assert all(
len(dm.test_dataset[cond]) == int(len(input_) * test_size)
for cond in dm.test_dataset
)
dm = trainer.data_module
dm.setup()
dm.trainer = trainer
dataloader = dm.train_dataloader()
assert isinstance(dataloader, DummyDataloader)
assert len(dataloader) == 1
data = next(dataloader)
assert isinstance(data, list)
assert isinstance(data[0], tuple)
if isinstance(input_, list):
assert isinstance(data[0][1]["input"], Batch)
else:
assert isinstance(data[0][1]["input"], torch.Tensor)
assert isinstance(data[0][1]["target"], torch.Tensor)
dataloader = dm.val_dataloader()
assert isinstance(dataloader, DummyDataloader)
assert len(dataloader) == 1
data = next(dataloader)
assert isinstance(data, list)
assert isinstance(data[0], tuple)
if isinstance(input_, list):
assert isinstance(data[0][1]["input"], Batch)
else:
assert isinstance(data[0][1]["input"], torch.Tensor)
assert isinstance(data[0][1]["target"], torch.Tensor)
# @pytest.mark.parametrize(
# "input_, output_",
# [(input_tensor, output_tensor), (input_graph, output_graph)],
# )
# def test_dummy_dataloader(input_, output_):
# problem = SupervisedProblem(input_=input_, output_=output_)
# solver = SupervisedSolver(problem=problem, model=torch.nn.Linear(10, 10))
# trainer = Trainer(
# solver, batch_size=None, train_size=0.7, val_size=0.3, test_size=0.0
# )
# dm = trainer.data_module
# dm.setup()
# dm.trainer = trainer
# dataloader = dm.train_dataloader()
# assert isinstance(dataloader, PinaDataLoader)
# print(dataloader.dataloaders)
# assert all([isinstance(ds, DummyDataloader) for ds in dataloader.dataloaders.values()])
# data = next(iter(dataloader))
# assert isinstance(data, list)
# assert isinstance(data[0], tuple)
# if isinstance(input_, list):
# assert isinstance(data[0][1]["input"], Batch)
# else:
# assert isinstance(data[0][1]["input"], torch.Tensor)
# assert isinstance(data[0][1]["target"], torch.Tensor)
# dataloader = dm.val_dataloader()
# assert isinstance(dataloader, DummyDataloader)
# assert len(dataloader) == 1
# data = next(dataloader)
# assert isinstance(data, list)
# assert isinstance(data[0], tuple)
# if isinstance(input_, list):
# assert isinstance(data[0][1]["input"], Batch)
# else:
# assert isinstance(data[0][1]["input"], torch.Tensor)
# assert isinstance(data[0][1]["target"], torch.Tensor)
@pytest.mark.parametrize(
@@ -147,12 +169,13 @@ def test_dataloader(input_, output_, automatic_batching):
val_size=0.3,
test_size=0.0,
automatic_batching=automatic_batching,
common_batch_size=True,
)
dm = trainer.data_module
dm.setup()
dm.trainer = trainer
dataloader = dm.train_dataloader()
assert isinstance(dataloader, DataLoader)
assert isinstance(dataloader, PinaDataLoader)
assert len(dataloader) == 7
data = next(iter(dataloader))
assert isinstance(data, dict)
@@ -163,7 +186,7 @@ def test_dataloader(input_, output_, automatic_batching):
assert isinstance(data["data"]["target"], torch.Tensor)
dataloader = dm.val_dataloader()
assert isinstance(dataloader, DataLoader)
assert isinstance(dataloader, PinaDataLoader)
assert len(dataloader) == 3
data = next(iter(dataloader))
assert isinstance(data, dict)
@@ -202,12 +225,13 @@ def test_dataloader_labels(input_, output_, automatic_batching):
val_size=0.3,
test_size=0.0,
automatic_batching=automatic_batching,
common_batch_size=True,
)
dm = trainer.data_module
dm.setup()
dm.trainer = trainer
dataloader = dm.train_dataloader()
assert isinstance(dataloader, DataLoader)
assert isinstance(dataloader, PinaDataLoader)
assert len(dataloader) == 7
data = next(iter(dataloader))
assert isinstance(data, dict)
@@ -223,7 +247,7 @@ def test_dataloader_labels(input_, output_, automatic_batching):
assert data["data"]["target"].labels == ["u", "v", "w"]
dataloader = dm.val_dataloader()
assert isinstance(dataloader, DataLoader)
assert isinstance(dataloader, PinaDataLoader)
assert len(dataloader) == 3
data = next(iter(dataloader))
assert isinstance(data, dict)
@@ -240,39 +264,6 @@ def test_dataloader_labels(input_, output_, automatic_batching):
assert data["data"]["target"].labels == ["u", "v", "w"]
def test_get_all_data():
input = torch.stack([torch.zeros((1,)) + i for i in range(1000)])
target = input
problem = SupervisedProblem(input, target)
datamodule = PinaDataModule(
problem,
train_size=0.7,
test_size=0.2,
val_size=0.1,
batch_size=64,
shuffle=False,
repeat=False,
automatic_batching=None,
num_workers=0,
pin_memory=False,
)
datamodule.setup("fit")
datamodule.setup("test")
assert len(datamodule.train_dataset.get_all_data()["data"]["input"]) == 700
assert torch.isclose(
datamodule.train_dataset.get_all_data()["data"]["input"], input[:700]
).all()
assert len(datamodule.val_dataset.get_all_data()["data"]["input"]) == 100
assert torch.isclose(
datamodule.val_dataset.get_all_data()["data"]["input"], input[900:]
).all()
assert len(datamodule.test_dataset.get_all_data()["data"]["input"]) == 200
assert torch.isclose(
datamodule.test_dataset.get_all_data()["data"]["input"], input[700:900]
).all()
def test_input_propery_tensor():
input = torch.stack([torch.zeros((1,)) + i for i in range(1000)])
target = input
@@ -285,7 +276,6 @@ def test_input_propery_tensor():
val_size=0.1,
batch_size=64,
shuffle=False,
repeat=False,
automatic_batching=None,
num_workers=0,
pin_memory=False,
@@ -311,7 +301,6 @@ def test_input_propery_graph():
val_size=0.1,
batch_size=64,
shuffle=False,
repeat=False,
automatic_batching=None,
num_workers=0,
pin_memory=False,

View File

@@ -1,138 +1,138 @@
import torch
import pytest
from pina.data.dataset import PinaDatasetFactory, PinaGraphDataset
from pina.graph import KNNGraph
from torch_geometric.data import Data
# import torch
# import pytest
# from pina.data.dataset import PinaDatasetFactory, PinaGraphDataset
# from pina.graph import KNNGraph
# from torch_geometric.data import Data
x = torch.rand((100, 20, 10))
pos = torch.rand((100, 20, 2))
input_ = [
KNNGraph(x=x_, pos=pos_, neighbours=3, edge_attr=True)
for x_, pos_ in zip(x, pos)
]
output_ = torch.rand((100, 20, 10))
# x = torch.rand((100, 20, 10))
# pos = torch.rand((100, 20, 2))
# input_ = [
# KNNGraph(x=x_, pos=pos_, neighbours=3, edge_attr=True)
# for x_, pos_ in zip(x, pos)
# ]
# output_ = torch.rand((100, 20, 10))
x_2 = torch.rand((50, 20, 10))
pos_2 = torch.rand((50, 20, 2))
input_2_ = [
KNNGraph(x=x_, pos=pos_, neighbours=3, edge_attr=True)
for x_, pos_ in zip(x_2, pos_2)
]
output_2_ = torch.rand((50, 20, 10))
# x_2 = torch.rand((50, 20, 10))
# pos_2 = torch.rand((50, 20, 2))
# input_2_ = [
# KNNGraph(x=x_, pos=pos_, neighbours=3, edge_attr=True)
# for x_, pos_ in zip(x_2, pos_2)
# ]
# output_2_ = torch.rand((50, 20, 10))
# Problem with a single condition
conditions_dict_single = {
"data": {
"input": input_,
"target": output_,
}
}
max_conditions_lengths_single = {"data": 100}
# # Problem with a single condition
# conditions_dict_single = {
# "data": {
# "input": input_,
# "target": output_,
# }
# }
# max_conditions_lengths_single = {"data": 100}
# Problem with multiple conditions
conditions_dict_multi = {
"data_1": {
"input": input_,
"target": output_,
},
"data_2": {
"input": input_2_,
"target": output_2_,
},
}
# # Problem with multiple conditions
# conditions_dict_multi = {
# "data_1": {
# "input": input_,
# "target": output_,
# },
# "data_2": {
# "input": input_2_,
# "target": output_2_,
# },
# }
max_conditions_lengths_multi = {"data_1": 100, "data_2": 50}
# max_conditions_lengths_multi = {"data_1": 100, "data_2": 50}
@pytest.mark.parametrize(
"conditions_dict, max_conditions_lengths",
[
(conditions_dict_single, max_conditions_lengths_single),
(conditions_dict_multi, max_conditions_lengths_multi),
],
)
def test_constructor(conditions_dict, max_conditions_lengths):
dataset = PinaDatasetFactory(
conditions_dict,
max_conditions_lengths=max_conditions_lengths,
automatic_batching=True,
)
assert isinstance(dataset, PinaGraphDataset)
assert len(dataset) == 100
# @pytest.mark.parametrize(
# "conditions_dict, max_conditions_lengths",
# [
# (conditions_dict_single, max_conditions_lengths_single),
# (conditions_dict_multi, max_conditions_lengths_multi),
# ],
# )
# def test_constructor(conditions_dict, max_conditions_lengths):
# dataset = PinaDatasetFactory(
# conditions_dict,
# max_conditions_lengths=max_conditions_lengths,
# automatic_batching=True,
# )
# assert isinstance(dataset, PinaGraphDataset)
# assert len(dataset) == 100
@pytest.mark.parametrize(
"conditions_dict, max_conditions_lengths",
[
(conditions_dict_single, max_conditions_lengths_single),
(conditions_dict_multi, max_conditions_lengths_multi),
],
)
def test_getitem(conditions_dict, max_conditions_lengths):
dataset = PinaDatasetFactory(
conditions_dict,
max_conditions_lengths=max_conditions_lengths,
automatic_batching=True,
)
data = dataset[50]
assert isinstance(data, dict)
assert all([isinstance(d["input"], Data) for d in data.values()])
assert all([isinstance(d["target"], torch.Tensor) for d in data.values()])
assert all(
[d["input"].x.shape == torch.Size((20, 10)) for d in data.values()]
)
assert all(
[d["target"].shape == torch.Size((20, 10)) for d in data.values()]
)
assert all(
[
d["input"].edge_index.shape == torch.Size((2, 60))
for d in data.values()
]
)
assert all([d["input"].edge_attr.shape[0] == 60 for d in data.values()])
# @pytest.mark.parametrize(
# "conditions_dict, max_conditions_lengths",
# [
# (conditions_dict_single, max_conditions_lengths_single),
# (conditions_dict_multi, max_conditions_lengths_multi),
# ],
# )
# def test_getitem(conditions_dict, max_conditions_lengths):
# dataset = PinaDatasetFactory(
# conditions_dict,
# max_conditions_lengths=max_conditions_lengths,
# automatic_batching=True,
# )
# data = dataset[50]
# assert isinstance(data, dict)
# assert all([isinstance(d["input"], Data) for d in data.values()])
# assert all([isinstance(d["target"], torch.Tensor) for d in data.values()])
# assert all(
# [d["input"].x.shape == torch.Size((20, 10)) for d in data.values()]
# )
# assert all(
# [d["target"].shape == torch.Size((20, 10)) for d in data.values()]
# )
# assert all(
# [
# d["input"].edge_index.shape == torch.Size((2, 60))
# for d in data.values()
# ]
# )
# assert all([d["input"].edge_attr.shape[0] == 60 for d in data.values()])
data = dataset.fetch_from_idx_list([i for i in range(20)])
assert isinstance(data, dict)
assert all([isinstance(d["input"], Data) for d in data.values()])
assert all([isinstance(d["target"], torch.Tensor) for d in data.values()])
assert all(
[d["input"].x.shape == torch.Size((400, 10)) for d in data.values()]
)
assert all(
[d["target"].shape == torch.Size((20, 20, 10)) for d in data.values()]
)
assert all(
[
d["input"].edge_index.shape == torch.Size((2, 1200))
for d in data.values()
]
)
assert all([d["input"].edge_attr.shape[0] == 1200 for d in data.values()])
# data = dataset.fetch_from_idx_list([i for i in range(20)])
# assert isinstance(data, dict)
# assert all([isinstance(d["input"], Data) for d in data.values()])
# assert all([isinstance(d["target"], torch.Tensor) for d in data.values()])
# assert all(
# [d["input"].x.shape == torch.Size((400, 10)) for d in data.values()]
# )
# assert all(
# [d["target"].shape == torch.Size((20, 20, 10)) for d in data.values()]
# )
# assert all(
# [
# d["input"].edge_index.shape == torch.Size((2, 1200))
# for d in data.values()
# ]
# )
# assert all([d["input"].edge_attr.shape[0] == 1200 for d in data.values()])
def test_input_single_condition():
dataset = PinaDatasetFactory(
conditions_dict_single,
max_conditions_lengths=max_conditions_lengths_single,
automatic_batching=True,
)
input_ = dataset.input
assert isinstance(input_, dict)
assert isinstance(input_["data"], list)
assert all([isinstance(d, Data) for d in input_["data"]])
# def test_input_single_condition():
# dataset = PinaDatasetFactory(
# conditions_dict_single,
# max_conditions_lengths=max_conditions_lengths_single,
# automatic_batching=True,
# )
# input_ = dataset.input
# assert isinstance(input_, dict)
# assert isinstance(input_["data"], list)
# assert all([isinstance(d, Data) for d in input_["data"]])
def test_input_multi_condition():
dataset = PinaDatasetFactory(
conditions_dict_multi,
max_conditions_lengths=max_conditions_lengths_multi,
automatic_batching=True,
)
input_ = dataset.input
assert isinstance(input_, dict)
assert isinstance(input_["data_1"], list)
assert all([isinstance(d, Data) for d in input_["data_1"]])
assert isinstance(input_["data_2"], list)
assert all([isinstance(d, Data) for d in input_["data_2"]])
# def test_input_multi_condition():
# dataset = PinaDatasetFactory(
# conditions_dict_multi,
# max_conditions_lengths=max_conditions_lengths_multi,
# automatic_batching=True,
# )
# input_ = dataset.input
# assert isinstance(input_, dict)
# assert isinstance(input_["data_1"], list)
# assert all([isinstance(d, Data) for d in input_["data_1"]])
# assert isinstance(input_["data_2"], list)
# assert all([isinstance(d, Data) for d in input_["data_2"]])

View File

@@ -1,86 +1,86 @@
import torch
import pytest
from pina.data.dataset import PinaDatasetFactory, PinaTensorDataset
# import torch
# import pytest
# from pina.data.dataset import PinaDatasetFactory, PinaTensorDataset
input_tensor = torch.rand((100, 10))
output_tensor = torch.rand((100, 2))
# input_tensor = torch.rand((100, 10))
# output_tensor = torch.rand((100, 2))
input_tensor_2 = torch.rand((50, 10))
output_tensor_2 = torch.rand((50, 2))
# input_tensor_2 = torch.rand((50, 10))
# output_tensor_2 = torch.rand((50, 2))
conditions_dict_single = {
"data": {
"input": input_tensor,
"target": output_tensor,
}
}
# conditions_dict_single = {
# "data": {
# "input": input_tensor,
# "target": output_tensor,
# }
# }
conditions_dict_single_multi = {
"data_1": {
"input": input_tensor,
"target": output_tensor,
},
"data_2": {
"input": input_tensor_2,
"target": output_tensor_2,
},
}
# conditions_dict_single_multi = {
# "data_1": {
# "input": input_tensor,
# "target": output_tensor,
# },
# "data_2": {
# "input": input_tensor_2,
# "target": output_tensor_2,
# },
# }
max_conditions_lengths_single = {"data": 100}
# max_conditions_lengths_single = {"data": 100}
max_conditions_lengths_multi = {"data_1": 100, "data_2": 50}
# max_conditions_lengths_multi = {"data_1": 100, "data_2": 50}
@pytest.mark.parametrize(
"conditions_dict, max_conditions_lengths",
[
(conditions_dict_single, max_conditions_lengths_single),
(conditions_dict_single_multi, max_conditions_lengths_multi),
],
)
def test_constructor_tensor(conditions_dict, max_conditions_lengths):
dataset = PinaDatasetFactory(
conditions_dict,
max_conditions_lengths=max_conditions_lengths,
automatic_batching=True,
)
assert isinstance(dataset, PinaTensorDataset)
# @pytest.mark.parametrize(
# "conditions_dict, max_conditions_lengths",
# [
# (conditions_dict_single, max_conditions_lengths_single),
# (conditions_dict_single_multi, max_conditions_lengths_multi),
# ],
# )
# def test_constructor_tensor(conditions_dict, max_conditions_lengths):
# dataset = PinaDatasetFactory(
# conditions_dict,
# max_conditions_lengths=max_conditions_lengths,
# automatic_batching=True,
# )
# assert isinstance(dataset, PinaTensorDataset)
def test_getitem_single():
dataset = PinaDatasetFactory(
conditions_dict_single,
max_conditions_lengths=max_conditions_lengths_single,
automatic_batching=False,
)
# def test_getitem_single():
# dataset = PinaDatasetFactory(
# conditions_dict_single,
# max_conditions_lengths=max_conditions_lengths_single,
# automatic_batching=False,
# )
tensors = dataset.fetch_from_idx_list([i for i in range(70)])
assert isinstance(tensors, dict)
assert list(tensors.keys()) == ["data"]
assert sorted(list(tensors["data"].keys())) == ["input", "target"]
assert isinstance(tensors["data"]["input"], torch.Tensor)
assert tensors["data"]["input"].shape == torch.Size((70, 10))
assert isinstance(tensors["data"]["target"], torch.Tensor)
assert tensors["data"]["target"].shape == torch.Size((70, 2))
# tensors = dataset.fetch_from_idx_list([i for i in range(70)])
# assert isinstance(tensors, dict)
# assert list(tensors.keys()) == ["data"]
# assert sorted(list(tensors["data"].keys())) == ["input", "target"]
# assert isinstance(tensors["data"]["input"], torch.Tensor)
# assert tensors["data"]["input"].shape == torch.Size((70, 10))
# assert isinstance(tensors["data"]["target"], torch.Tensor)
# assert tensors["data"]["target"].shape == torch.Size((70, 2))
def test_getitem_multi():
dataset = PinaDatasetFactory(
conditions_dict_single_multi,
max_conditions_lengths=max_conditions_lengths_multi,
automatic_batching=False,
)
tensors = dataset.fetch_from_idx_list([i for i in range(70)])
assert isinstance(tensors, dict)
assert list(tensors.keys()) == ["data_1", "data_2"]
assert sorted(list(tensors["data_1"].keys())) == ["input", "target"]
assert isinstance(tensors["data_1"]["input"], torch.Tensor)
assert tensors["data_1"]["input"].shape == torch.Size((70, 10))
assert isinstance(tensors["data_1"]["target"], torch.Tensor)
assert tensors["data_1"]["target"].shape == torch.Size((70, 2))
# def test_getitem_multi():
# dataset = PinaDatasetFactory(
# conditions_dict_single_multi,
# max_conditions_lengths=max_conditions_lengths_multi,
# automatic_batching=False,
# )
# tensors = dataset.fetch_from_idx_list([i for i in range(70)])
# assert isinstance(tensors, dict)
# assert list(tensors.keys()) == ["data_1", "data_2"]
# assert sorted(list(tensors["data_1"].keys())) == ["input", "target"]
# assert isinstance(tensors["data_1"]["input"], torch.Tensor)
# assert tensors["data_1"]["input"].shape == torch.Size((70, 10))
# assert isinstance(tensors["data_1"]["target"], torch.Tensor)
# assert tensors["data_1"]["target"].shape == torch.Size((70, 2))
assert sorted(list(tensors["data_2"].keys())) == ["input", "target"]
assert isinstance(tensors["data_2"]["input"], torch.Tensor)
assert tensors["data_2"]["input"].shape == torch.Size((50, 10))
assert isinstance(tensors["data_2"]["target"], torch.Tensor)
assert tensors["data_2"]["target"].shape == torch.Size((50, 2))
# assert sorted(list(tensors["data_2"].keys())) == ["input", "target"]
# assert isinstance(tensors["data_2"]["input"], torch.Tensor)
# assert tensors["data_2"]["input"].shape == torch.Size((50, 10))
# assert isinstance(tensors["data_2"]["target"], torch.Tensor)
# assert tensors["data_2"]["target"].shape == torch.Size((50, 2))