pass method argument to fast laplacian (#648)

This commit is contained in:
Giovanni Canali
2025-09-18 13:07:49 +02:00
committed by GitHub
parent dc808c1d77
commit 87c5c6a674
2 changed files with 26 additions and 9 deletions

View File

@@ -253,7 +253,8 @@ def test_divergence(f):
Function(),
ids=["scalar_scalar", "scalar_vector", "vector_scalar", "vector_vector"],
)
def test_laplacian(f):
@pytest.mark.parametrize("method", ["std", "divgrad"])
def test_laplacian(f, method):
# Unpack the function
func_input, func, _, _, func_lap = f
@@ -265,7 +266,7 @@ def test_laplacian(f):
output_ = LabelTensor(output_, labels)
# Compute the true laplacian and the pina laplacian
pina_lap = laplacian(output_=output_, input_=input_)
pina_lap = laplacian(output_=output_, input_=input_, method=method)
true_lap = func_lap(input_)
# Check the shape and labels of the laplacian
@@ -276,24 +277,34 @@ def test_laplacian(f):
assert torch.allclose(pina_lap, true_lap)
# Test if labels are handled correctly
laplacian(output_=output_, input_=input_, components=output_.labels[0])
laplacian(output_=output_, input_=input_, d=input_.labels[0])
laplacian(
output_=output_,
input_=input_,
components=output_.labels[0],
method=method,
)
laplacian(output_=output_, input_=input_, d=input_.labels[0], method=method)
# Should fail if input not a LabelTensor
with pytest.raises(TypeError):
laplacian(output_=output_, input_=input_.tensor)
laplacian(output_=output_, input_=input_.tensor, method=method)
# Should fail if output not a LabelTensor
with pytest.raises(TypeError):
laplacian(output_=output_.tensor, input_=input_)
laplacian(output_=output_.tensor, input_=input_, method=method)
# Should fail for non-existent input labels
with pytest.raises(RuntimeError):
laplacian(output_=output_, input_=input_, d=["x", "y"])
laplacian(output_=output_, input_=input_, d=["x", "y"], method=method)
# Should fail for non-existent output labels
with pytest.raises(RuntimeError):
laplacian(output_=output_, input_=input_, components=["a", "b", "c"])
laplacian(
output_=output_,
input_=input_,
components=["a", "b", "c"],
method=method,
)
def test_advection_scalar():