add stokes problem
This commit is contained in:
45
examples/problems/stokes.py
Normal file
45
examples/problems/stokes.py
Normal file
@@ -0,0 +1,45 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.operators import nabla, grad, div
|
||||
from pina import Condition, Span, LabelTensor
|
||||
|
||||
|
||||
class Stokes(SpatialProblem):
|
||||
|
||||
spatial_variables = ['x', 'y']
|
||||
output_variables = ['ux', 'uy', 'p']
|
||||
domain = Span({'x': [-2, 2], 'y': [-1, 1]})
|
||||
|
||||
def momentum(input_, output_):
|
||||
#print(nabla(output_['ux', 'uy'], input_))
|
||||
#print(grad(output_['p'], input_))
|
||||
nabla_ = LabelTensor.hstack([
|
||||
LabelTensor(nabla(output_['ux'], input_), ['x']),
|
||||
LabelTensor(nabla(output_['uy'], input_), ['y'])])
|
||||
#return LabelTensor(nabla_.tensor + grad(output_['p'], input_).tensor, ['x', 'y'])
|
||||
return nabla_.tensor + grad(output_['p'], input_).tensor
|
||||
|
||||
def continuity(input_, output_):
|
||||
return div(output_['ux', 'uy'], input_)
|
||||
|
||||
def inlet(input_, output_):
|
||||
value = 2.0
|
||||
return output_['ux'] - value
|
||||
|
||||
def outlet(input_, output_):
|
||||
value = 0.0
|
||||
return output_['p'] - value
|
||||
|
||||
def wall(input_, output_):
|
||||
value = 0.0
|
||||
return output_['ux', 'uy'].tensor - value
|
||||
|
||||
conditions = {
|
||||
'gamma_top': Condition(Span({'x': [-2, 2], 'y': 1}), wall),
|
||||
'gamma_bot': Condition(Span({'x': [-2, 2], 'y': -1}), wall),
|
||||
'gamma_out': Condition(Span({'x': 2, 'y': [-1, 1]}), outlet),
|
||||
'gamma_in': Condition(Span({'x': -2, 'y': [-1, 1]}), inlet),
|
||||
'D': Condition(Span({'x': [-2, 2], 'y': [-1, 1]}), [momentum, continuity]),
|
||||
}
|
||||
54
examples/run_stokes.py
Normal file
54
examples/run_stokes.py
Normal file
@@ -0,0 +1,54 @@
|
||||
import argparse
|
||||
import sys
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn import ReLU, Tanh, Softplus
|
||||
|
||||
from pina import PINN, LabelTensor, Plotter
|
||||
from pina.model import FeedForward
|
||||
from pina.adaptive_functions import AdaptiveSin, AdaptiveCos, AdaptiveTanh
|
||||
from problems.stokes import Stokes
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser(description="Run PINA")
|
||||
group = parser.add_mutually_exclusive_group(required=True)
|
||||
group.add_argument("-s", "-save", action="store_true")
|
||||
group.add_argument("-l", "-load", action="store_true")
|
||||
parser.add_argument("id_run", help="number of run", type=int)
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
stokes_problem = Stokes()
|
||||
model = FeedForward(
|
||||
layers=[40, 20, 20, 10],
|
||||
output_variables=stokes_problem.output_variables,
|
||||
input_variables=stokes_problem.input_variables,
|
||||
func=Softplus,
|
||||
)
|
||||
|
||||
pinn = PINN(
|
||||
stokes_problem,
|
||||
model,
|
||||
lr=0.006,
|
||||
error_norm='mse',
|
||||
regularizer=1e-8,
|
||||
lr_accelerate=None)
|
||||
|
||||
if args.s:
|
||||
|
||||
#pinn.span_pts(200, 'grid', ['gamma_out'])
|
||||
pinn.span_pts(200, 'grid', ['gamma_top', 'gamma_bot', 'gamma_in', 'gamma_out'])
|
||||
pinn.span_pts(2000, 'random', ['D'])
|
||||
#plotter = Plotter()
|
||||
#plotter.plot_samples(pinn)
|
||||
pinn.train(10000, 100)
|
||||
pinn.save_state('pina.stokes')
|
||||
|
||||
else:
|
||||
pinn.load_state('pina.stokes')
|
||||
plotter = Plotter()
|
||||
plotter.plot_samples(pinn)
|
||||
plotter.plot(pinn)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user