fix problem doc
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
"""Module for Problems."""
|
||||
"""Module for the Problems."""
|
||||
|
||||
__all__ = [
|
||||
"AbstractProblem",
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
"""Module for AbstractProblem class"""
|
||||
"""Module for the AbstractProblem class"""
|
||||
|
||||
from abc import ABCMeta, abstractmethod
|
||||
from copy import deepcopy
|
||||
@@ -11,20 +11,16 @@ from ..utils import merge_tensors
|
||||
|
||||
class AbstractProblem(metaclass=ABCMeta):
|
||||
"""
|
||||
The abstract `AbstractProblem` class. All the class defining a PINA Problem
|
||||
should be inherited from this class.
|
||||
Abstract base class for PINA problems. All specific problem types should
|
||||
inherit from this class.
|
||||
|
||||
In the definition of a PINA problem, the fundamental elements are:
|
||||
the output variables, the condition(s), and the domain(s) where the
|
||||
conditions are applied.
|
||||
A PINA problem is defined by key components, which typically include output
|
||||
variables, conditions, and domains over which the conditions are applied.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
TODO
|
||||
|
||||
:return: _description_
|
||||
:rtype: _type_
|
||||
Initialization of the :class:`AbstractProblem` class.
|
||||
"""
|
||||
self._discretised_domains = {}
|
||||
# create collector to manage problem data
|
||||
@@ -48,20 +44,19 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
@property
|
||||
def batching_dimension(self):
|
||||
"""
|
||||
TODO
|
||||
Get batching dimension.
|
||||
|
||||
:return: _description_
|
||||
:rtype: _type_
|
||||
:return: The batching dimension.
|
||||
:rtype int
|
||||
"""
|
||||
return self._batching_dimension
|
||||
|
||||
@batching_dimension.setter
|
||||
def batching_dimension(self, value):
|
||||
"""
|
||||
TODO
|
||||
Set the batching dimension.
|
||||
|
||||
:return: _description_
|
||||
:rtype: _type_
|
||||
:param int value: The batching dimension.
|
||||
"""
|
||||
self._batching_dimension = value
|
||||
|
||||
@@ -69,10 +64,11 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
@property
|
||||
def input_pts(self):
|
||||
"""
|
||||
TODO
|
||||
Return a dictionary mapping condition names to their corresponding
|
||||
input points.
|
||||
|
||||
:return: _description_
|
||||
:rtype: _type_
|
||||
:return: The input points of the problem.
|
||||
:rtype: dict
|
||||
"""
|
||||
to_return = {}
|
||||
for cond_name, cond in self.conditions.items():
|
||||
@@ -85,21 +81,21 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
@property
|
||||
def discretised_domains(self):
|
||||
"""
|
||||
TODO
|
||||
Return a dictionary mapping domains to their corresponding sampled
|
||||
points.
|
||||
|
||||
:return: _description_
|
||||
:rtype: _type_
|
||||
:return: The discretised domains.
|
||||
:rtype dict
|
||||
"""
|
||||
return self._discretised_domains
|
||||
|
||||
def __deepcopy__(self, memo):
|
||||
"""
|
||||
Implements deepcopy for the
|
||||
:class:`~pina.problem.abstract_problem.AbstractProblem` class.
|
||||
Perform a deep copy of the :class:`AbstractProblem` instance.
|
||||
|
||||
:param dict memo: Memory dictionary, to avoid excess copy
|
||||
:return: The deep copy of the
|
||||
:class:`~pina.problem.abstract_problem.AbstractProblem` class
|
||||
:param dict memo: A dictionary used to track objects already copied
|
||||
during the deep copy process to prevent redundant copies.
|
||||
:return: A deep copy of the :class:`AbstractProblem` instance.
|
||||
:rtype: AbstractProblem
|
||||
"""
|
||||
cls = self.__class__
|
||||
@@ -114,7 +110,7 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
"""
|
||||
Check if all the domains are discretised.
|
||||
|
||||
:return: True if all the domains are discretised, False otherwise
|
||||
:return: ``True`` if all domains are discretised, ``False`` otherwise.
|
||||
:rtype: bool
|
||||
"""
|
||||
return all(
|
||||
@@ -124,12 +120,10 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
@property
|
||||
def input_variables(self):
|
||||
"""
|
||||
The input variables of the AbstractProblem, whose type depends on the
|
||||
type of domain (spatial, temporal, and parameter).
|
||||
|
||||
:return: the input variables of self
|
||||
:rtype: list
|
||||
Get the input variables of the problem.
|
||||
|
||||
:return: The input variables of the problem.
|
||||
:rtype: list[str]
|
||||
"""
|
||||
variables = []
|
||||
|
||||
@@ -144,20 +138,29 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
|
||||
@input_variables.setter
|
||||
def input_variables(self, variables):
|
||||
"""
|
||||
Set the input variables of the AbstractProblem.
|
||||
|
||||
:param list[str] variables: The input variables of the problem.
|
||||
:raises RuntimeError: Not implemented.
|
||||
"""
|
||||
raise RuntimeError
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def output_variables(self):
|
||||
"""
|
||||
The output variables of the problem.
|
||||
Get the output variables of the problem.
|
||||
"""
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def conditions(self):
|
||||
"""
|
||||
The conditions of the problem.
|
||||
Get the conditions of the problem.
|
||||
|
||||
:return: The conditions of the problem.
|
||||
:rtype: dict
|
||||
"""
|
||||
return self.conditions
|
||||
|
||||
@@ -165,30 +168,28 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
self, n=None, mode="random", domains="all", sample_rules=None
|
||||
):
|
||||
"""
|
||||
Generate a set of points to span the `Location` of all the conditions of
|
||||
the problem.
|
||||
Discretize the problem's domains by sampling a specified number of
|
||||
points according to the selected sampling mode.
|
||||
|
||||
:param n: Number of points to sample, see Note below
|
||||
for reference.
|
||||
:type n: int
|
||||
:param mode: Mode for sampling, defaults to ``random``.
|
||||
:param int n: The number of points to sample.
|
||||
:param mode: The sampling method. Default is ``random``.
|
||||
Available modes include: random sampling, ``random``;
|
||||
latin hypercube sampling, ``latin`` or ``lh``;
|
||||
chebyshev sampling, ``chebyshev``; grid sampling ``grid``.
|
||||
:param variables: variable(s) to sample, defaults to 'all'.
|
||||
:type variables: str | list[str]
|
||||
:param domains: Domain from where to sample, defaults to 'all'.
|
||||
:param domains: The domains from which to sample. Default is ``all``.
|
||||
:type domains: str | list[str]
|
||||
:param dict sample_rules: A dictionary of custom sampling rules.
|
||||
:raises RuntimeError: If both ``n`` and ``sample_rules`` are specified.
|
||||
:raises RuntimeError: If neither ``n`` nor ``sample_rules`` are set.
|
||||
|
||||
:Example:
|
||||
>>> pinn.discretise_domain(n=10, mode='grid')
|
||||
>>> pinn.discretise_domain(n=10, mode='grid', domain=['bound1'])
|
||||
>>> pinn.discretise_domain(n=10, mode='grid', variables=['x'])
|
||||
>>> problem.discretise_domain(n=10, mode='grid')
|
||||
>>> problem.discretise_domain(n=10, mode='grid', domains=['gamma1'])
|
||||
|
||||
.. warning::
|
||||
``random`` is currently the only implemented ``mode`` for all
|
||||
geometries, i.e. ``EllipsoidDomain``, ``CartesianDomain``,
|
||||
``SimplexDomain`` and the geometries compositions ``Union``,
|
||||
``SimplexDomain``, and geometry compositions ``Union``,
|
||||
``Difference``, ``Exclusion``, ``Intersection``. The
|
||||
modes ``latin`` or ``lh``, ``chebyshev``, ``grid`` are only
|
||||
implemented for ``CartesianDomain``.
|
||||
@@ -218,12 +219,31 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
raise RuntimeError("You have to specify either n or sample_rules.")
|
||||
|
||||
def _apply_default_discretization(self, n, mode, domains):
|
||||
"""
|
||||
Apply default discretization to the problem's domains.
|
||||
|
||||
:param int n: The number of points to sample.
|
||||
:param mode: The sampling method.
|
||||
:param domains: The domains from which to sample.
|
||||
:type domains: str | list[str]
|
||||
"""
|
||||
for domain in domains:
|
||||
self.discretised_domains[domain] = (
|
||||
self.domains[domain].sample(n, mode).sort_labels()
|
||||
)
|
||||
|
||||
def _apply_custom_discretization(self, sample_rules, domains):
|
||||
"""
|
||||
Apply custom discretization to the problem's domains.
|
||||
|
||||
:param dict sample_rules: A dictionary of custom sampling rules.
|
||||
:param domains: The domains from which to sample.
|
||||
:type domains: str | list[str]
|
||||
:raises RuntimeError: If the keys of the sample_rules dictionary are not
|
||||
the same as the input variables.
|
||||
:raises RuntimeError: If custom discretisation is applied on a domain
|
||||
that is not a CartesianDomain.
|
||||
"""
|
||||
if sorted(list(sample_rules.keys())) != sorted(self.input_variables):
|
||||
raise RuntimeError(
|
||||
"The keys of the sample_rules dictionary must be the same as "
|
||||
@@ -247,10 +267,10 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
|
||||
def add_points(self, new_points_dict):
|
||||
"""
|
||||
Add input points to a sampled condition
|
||||
:param new_points_dict: Dictionary of input points (condition_name:
|
||||
LabelTensor)
|
||||
:raises RuntimeError: if at least one condition is not already sampled
|
||||
Add new points to an already sampled domain.
|
||||
|
||||
:param dict new_points_dict: The dictionary mapping new points to their
|
||||
corresponding domain.
|
||||
"""
|
||||
for k, v in new_points_dict.items():
|
||||
self.discretised_domains[k] = LabelTensor.vstack(
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
"""Module for the ParametricProblem class"""
|
||||
"""Module for the InverseProblem class"""
|
||||
|
||||
from abc import abstractmethod
|
||||
import torch
|
||||
@@ -7,19 +7,14 @@ from .abstract_problem import AbstractProblem
|
||||
|
||||
class InverseProblem(AbstractProblem):
|
||||
"""
|
||||
The class for the definition of inverse problems, i.e., problems
|
||||
with unknown parameters that have to be learned during the training process
|
||||
from given data.
|
||||
|
||||
Here's an example of a spatial inverse ODE problem, i.e., a spatial
|
||||
ODE problem with an unknown parameter `alpha` as coefficient of the
|
||||
derivative term.
|
||||
|
||||
:Example:
|
||||
TODO
|
||||
Class for defining inverse problems, where the objective is to determine
|
||||
unknown parameters through training, based on given data.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
Initialization of the :class:`InverseProblem` class.
|
||||
"""
|
||||
super().__init__()
|
||||
# storing unknown_parameters for optimization
|
||||
self.unknown_parameters = {}
|
||||
@@ -33,23 +28,34 @@ class InverseProblem(AbstractProblem):
|
||||
@abstractmethod
|
||||
def unknown_parameter_domain(self):
|
||||
"""
|
||||
The parameters' domain of the problem.
|
||||
The domain of the unknown parameters of the problem.
|
||||
"""
|
||||
|
||||
@property
|
||||
def unknown_variables(self):
|
||||
"""
|
||||
The parameters of the problem.
|
||||
Get the unknown variables of the problem.
|
||||
|
||||
:return: The unknown variables of the problem.
|
||||
:rtype: list[str]
|
||||
"""
|
||||
return self.unknown_parameter_domain.variables
|
||||
|
||||
@property
|
||||
def unknown_parameters(self):
|
||||
"""
|
||||
The parameters of the problem.
|
||||
Get the unknown parameters of the problem.
|
||||
|
||||
:return: The unknown parameters of the problem.
|
||||
:rtype: torch.nn.Parameter
|
||||
"""
|
||||
return self.__unknown_parameters
|
||||
|
||||
@unknown_parameters.setter
|
||||
def unknown_parameters(self, value):
|
||||
"""
|
||||
Set the unknown parameters of the problem.
|
||||
|
||||
:param torch.nn.Parameter value: The unknown parameters of the problem.
|
||||
"""
|
||||
self.__unknown_parameters = value
|
||||
|
||||
@@ -7,26 +7,23 @@ from .abstract_problem import AbstractProblem
|
||||
|
||||
class ParametricProblem(AbstractProblem):
|
||||
"""
|
||||
The class for the definition of parametric problems, i.e., problems
|
||||
with parameters among the input variables.
|
||||
|
||||
Here's an example of a spatial parametric ODE problem, i.e., a spatial
|
||||
ODE problem with an additional parameter `alpha` as coefficient of the
|
||||
derivative term.
|
||||
|
||||
:Example:
|
||||
TODO
|
||||
Class for defining parametric problems, where certain input variables are
|
||||
treated as parameters that can vary, allowing the model to adapt to
|
||||
different scenarios based on the chosen parameters.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def parameter_domain(self):
|
||||
"""
|
||||
The parameters' domain of the problem.
|
||||
The domain of the parameters of the problem.
|
||||
"""
|
||||
|
||||
@property
|
||||
def parameters(self):
|
||||
"""
|
||||
The parameters' variables of the problem.
|
||||
Get the parameters of the problem.
|
||||
|
||||
:return: The parameters of the problem.
|
||||
:rtype: list[str]
|
||||
"""
|
||||
return self.parameter_domain.variables
|
||||
|
||||
@@ -7,13 +7,8 @@ from .abstract_problem import AbstractProblem
|
||||
|
||||
class SpatialProblem(AbstractProblem):
|
||||
"""
|
||||
The class for the definition of spatial problems, i.e., for problems
|
||||
with spatial input variables.
|
||||
|
||||
Here's an example of a spatial 1-dimensional ODE problem.
|
||||
|
||||
:Example:
|
||||
TODO
|
||||
Class for defining spatial problems, where the problem domain is defined in
|
||||
terms of spatial variables.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
@@ -25,6 +20,9 @@ class SpatialProblem(AbstractProblem):
|
||||
@property
|
||||
def spatial_variables(self):
|
||||
"""
|
||||
The spatial input variables of the problem.
|
||||
Get the spatial input variables of the problem.
|
||||
|
||||
:return: The spatial input variables of the problem.
|
||||
:rtype: list[str]
|
||||
"""
|
||||
return self.spatial_domain.variables
|
||||
|
||||
@@ -7,13 +7,8 @@ from .abstract_problem import AbstractProblem
|
||||
|
||||
class TimeDependentProblem(AbstractProblem):
|
||||
"""
|
||||
The class for the definition of time-dependent problems, i.e., for problems
|
||||
depending on time.
|
||||
|
||||
Here's an example of a 1D wave problem.
|
||||
|
||||
:Example:
|
||||
TODO
|
||||
Class for defining time-dependent problems, where the system's behavior
|
||||
changes with respect to time.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
@@ -25,6 +20,9 @@ class TimeDependentProblem(AbstractProblem):
|
||||
@property
|
||||
def temporal_variable(self):
|
||||
"""
|
||||
The time variable of the problem.
|
||||
Get the time variable of the problem.
|
||||
|
||||
:return: The time variable of the problem.
|
||||
:rtype: list[str]
|
||||
"""
|
||||
return self.temporal_domain.variables
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
"""TODO"""
|
||||
"""Module for implemented problems."""
|
||||
|
||||
__all__ = [
|
||||
"SupervisedProblem",
|
||||
|
||||
@@ -16,7 +16,7 @@ class AdvectionEquation(Equation):
|
||||
|
||||
def __init__(self, c):
|
||||
"""
|
||||
Initialize the advection equation.
|
||||
Initialization of the :class:`AdvectionEquation`.
|
||||
|
||||
:param c: The advection velocity parameter.
|
||||
:type c: float | int
|
||||
@@ -80,7 +80,7 @@ class AdvectionProblem(SpatialProblem, TimeDependentProblem):
|
||||
|
||||
def __init__(self, c=1.0):
|
||||
"""
|
||||
Initialize the advection problem.
|
||||
Initialization of the :class:`AdvectionProblem`.
|
||||
|
||||
:param c: The advection velocity parameter.
|
||||
:type c: float | int
|
||||
|
||||
@@ -16,7 +16,7 @@ class HelmholtzEquation(Equation):
|
||||
|
||||
def __init__(self, alpha):
|
||||
"""
|
||||
Initialize the Helmholtz equation.
|
||||
Initialization of the :class:`HelmholtzEquation` class.
|
||||
|
||||
:param alpha: Parameter of the forcing term.
|
||||
:type alpha: float | int
|
||||
@@ -75,7 +75,7 @@ class HelmholtzProblem(SpatialProblem):
|
||||
|
||||
def __init__(self, alpha=3.0):
|
||||
"""
|
||||
Initialize the Helmholtz problem.
|
||||
Initialization of the :class:`HelmholtzProblem` class.
|
||||
|
||||
:param alpha: Parameter of the forcing term.
|
||||
:type alpha: float | int
|
||||
|
||||
@@ -2,12 +2,11 @@
|
||||
|
||||
from ..abstract_problem import AbstractProblem
|
||||
from ... import Condition
|
||||
from ... import LabelTensor
|
||||
|
||||
|
||||
class SupervisedProblem(AbstractProblem):
|
||||
"""
|
||||
Definition of a supervised learning problem in PINA.
|
||||
Definition of a supervised-learning problem.
|
||||
|
||||
This class provides a simple way to define a supervised problem
|
||||
using a single condition of type
|
||||
@@ -28,7 +27,7 @@ class SupervisedProblem(AbstractProblem):
|
||||
self, input_, output_, input_variables=None, output_variables=None
|
||||
):
|
||||
"""
|
||||
Initialize the SupervisedProblem class.
|
||||
Initialization of the :class:`SupervisedProblem` class.
|
||||
|
||||
:param input_: Input data of the problem.
|
||||
:type input_: torch.Tensor | LabelTensor | Graph | Data
|
||||
|
||||
Reference in New Issue
Block a user