Documentation for v0.1 version (#199)

* Adding Equations, solving typos
* improve _code.rst
* the team rst and restuctore index.rst
* fixing errors

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
Dario Coscia
2023-11-08 14:39:00 +01:00
committed by Nicola Demo
parent 3f9305d475
commit 8b7b61b3bd
144 changed files with 2741 additions and 1766 deletions

View File

@@ -3,15 +3,17 @@ from .label_tensor import LabelTensor
from .geometry import Location
from .equation.equation import Equation
def dummy(a):
"""Dummy function for testing purposes."""
return None
class Condition:
"""
The class `Condition` is used to represent the constraints (physical
The class ``Condition`` is used to represent the constraints (physical
equations, boundary conditions, etc.) that should be satisfied in the
problem at hand. Condition objects are used to formulate the PINA :obj:`pina.problem.abstract_problem.Abstract_Problem` object.
problem at hand. Condition objects are used to formulate the PINA :obj:`pina.problem.abstract_problem.AbstractProblem` object.
Conditions can be specified in three ways:
1. By specifying the input and output points of the condition; in such a
@@ -49,8 +51,7 @@ class Condition:
"""
__slots__ = [
'input_points', 'output_points', 'location', 'equation',
'data_weight'
'input_points', 'output_points', 'location', 'equation', 'data_weight'
]
def _dictvalue_isinstance(self, dict_, key_, class_):
@@ -67,13 +68,14 @@ class Condition:
self.data_weight = kwargs.pop('data_weight', 1.0)
if len(args) != 0:
raise ValueError('Condition takes only the following keyword arguments: {`input_points`, `output_points`, `location`, `function`, `data_weight`}.')
raise ValueError(
'Condition takes only the following keyword arguments: {`input_points`, `output_points`, `location`, `function`, `data_weight`}.'
)
if (
sorted(kwargs.keys()) != sorted(['input_points', 'output_points']) and
sorted(kwargs.keys()) != sorted(['location', 'equation']) and
sorted(kwargs.keys()) != sorted(['input_points', 'equation'])
):
if (sorted(kwargs.keys()) != sorted(['input_points', 'output_points'])
and sorted(kwargs.keys()) != sorted(['location', 'equation'])
and sorted(kwargs.keys()) != sorted(
['input_points', 'equation'])):
raise ValueError(f'Invalid keyword arguments {kwargs.keys()}.')
if not self._dictvalue_isinstance(kwargs, 'input_points', LabelTensor):