Documentation for v0.1 version (#199)
* Adding Equations, solving typos * improve _code.rst * the team rst and restuctore index.rst * fixing errors --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
3f9305d475
commit
8b7b61b3bd
@@ -1,73 +1,78 @@
|
||||
"""Module for Location class."""
|
||||
"""Module for Difference class."""
|
||||
|
||||
import torch
|
||||
from .exclusion_domain import Exclusion
|
||||
from .operation_interface import OperationInterface
|
||||
from ..label_tensor import LabelTensor
|
||||
|
||||
|
||||
class Difference(OperationInterface):
|
||||
""" PINA implementation of Difference of Domains."""
|
||||
|
||||
def __init__(self, geometries):
|
||||
"""
|
||||
r"""
|
||||
PINA implementation of Difference of Domains.
|
||||
Given two sets :math:`A` and :math:`B` then the
|
||||
domain difference is defined as:
|
||||
|
||||
..:math:
|
||||
A \setminus B = \{x \mid x \in A \text{ and } x \not\in B\},
|
||||
.. math::
|
||||
A - B = \{x \mid x \in A \land x \not\in B\},
|
||||
|
||||
with :math:`x` a point in :math:`\mathbb{R}^N` and :math:`N`
|
||||
the dimension of the geometry space.
|
||||
|
||||
:param list geometries: A list of geometries from 'pina.geometry'
|
||||
such as 'EllipsoidDomain' or 'CartesianDomain'. The first
|
||||
:param list geometries: A list of geometries from ``pina.geometry``
|
||||
such as ``EllipsoidDomain`` or ``CartesianDomain``. The first
|
||||
geometry in the list is the geometry from which points are
|
||||
sampled. The rest of the geometries are the geometries that
|
||||
are excluded from the first geometry to find the difference.
|
||||
|
||||
:Example:
|
||||
# Create two ellipsoid domains
|
||||
>>> # Create two ellipsoid domains
|
||||
>>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]})
|
||||
>>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]})
|
||||
|
||||
# Create a Difference of the ellipsoid domains
|
||||
>>> # Create a Difference of the ellipsoid domains
|
||||
>>> difference = Difference([ellipsoid1, ellipsoid2])
|
||||
"""
|
||||
super().__init__(geometries)
|
||||
|
||||
def is_inside(self, point, check_border=False):
|
||||
"""
|
||||
Check if a point is inside the ``Difference`` domain.
|
||||
|
||||
:param point: Point to be checked.
|
||||
:type point: torch.Tensor
|
||||
:param bool check_border: If ``True``, the border is considered inside.
|
||||
:return: ``True`` if the point is inside the Exclusion domain, ``False`` otherwise.
|
||||
:rtype: bool
|
||||
"""
|
||||
for geometry in self.geometries[1:]:
|
||||
if geometry.is_inside(point):
|
||||
return False
|
||||
return self.geometries[0].is_inside(point, check_border)
|
||||
|
||||
def sample(self, n, mode='random', variables='all'):
|
||||
"""Sample routine for difference domain.
|
||||
"""
|
||||
Sample routine for ``Difference`` domain.
|
||||
|
||||
:param n: Number of points to sample in the shape.
|
||||
:type n: int
|
||||
:param mode: Mode for sampling, defaults to 'random'.
|
||||
Available modes include: random sampling, 'random'.
|
||||
:type mode: str, optional
|
||||
:param variables: pinn variable to be sampled, defaults to 'all'.
|
||||
:type variables: str or list[str], optional
|
||||
:param int n: Number of points to sample in the shape.
|
||||
:param str mode: Mode for sampling, defaults to ``random``. Available modes include: ``random``.
|
||||
:param variables: Variables to be sampled, defaults to ``all``.
|
||||
:type variables: str | list[str]
|
||||
:return: Returns ``LabelTensor`` of n sampled points.
|
||||
:rtype: LabelTensor
|
||||
|
||||
:Example:
|
||||
# Create two Cartesian domains
|
||||
>>> # Create two Cartesian domains
|
||||
>>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]})
|
||||
>>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]})
|
||||
|
||||
# Create a Difference of the ellipsoid domains
|
||||
>>> # Create a Difference of the ellipsoid domains
|
||||
>>> difference = Difference([cartesian1, cartesian2])
|
||||
|
||||
>>> # Sampling
|
||||
>>> difference.sample(n=5)
|
||||
LabelTensor([[0.8400, 0.9179],
|
||||
[0.9154, 0.5769],
|
||||
[1.7403, 0.4835],
|
||||
[0.9545, 1.2851],
|
||||
[1.3726, 0.9831]])
|
||||
|
||||
>>> len(difference.sample(n=5)
|
||||
5
|
||||
|
||||
|
||||
Reference in New Issue
Block a user