Documentation for v0.1 version (#199)
* Adding Equations, solving typos * improve _code.rst * the team rst and restuctore index.rst * fixing errors --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
3f9305d475
commit
8b7b61b3bd
@@ -13,17 +13,21 @@ class SimplexDomain(Location):
|
||||
:param simplex_matrix: A matrix of LabelTensor objects representing
|
||||
a vertex of the simplex (a tensor), and the coordinates of the
|
||||
point (a list of labels).
|
||||
|
||||
:type simplex_matrix: list[LabelTensor]
|
||||
:param sample_surface: A variable for choosing sample strategies. If
|
||||
`sample_surface=True` only samples on the Simplex surface
|
||||
frontier are taken. If `sample_surface=False`, no such criteria
|
||||
``sample_surface=True`` only samples on the Simplex surface
|
||||
frontier are taken. If ``sample_surface=False``, no such criteria
|
||||
is followed.
|
||||
|
||||
:type sample_surface: bool
|
||||
|
||||
.. warning::
|
||||
Sampling for dimensions greater or equal to 10 could result
|
||||
in a shrinking of the simplex, which degrades the quality
|
||||
of the samples. For dimensions higher than 10, other algorithms
|
||||
for sampling should be used.
|
||||
|
||||
:Example:
|
||||
>>> spatial_domain = SimplexDomain(
|
||||
[
|
||||
@@ -48,12 +52,14 @@ class SimplexDomain(Location):
|
||||
matrix_labels = simplex_matrix[0].labels
|
||||
if not all(vertex.labels == matrix_labels for vertex in simplex_matrix):
|
||||
raise ValueError(f"Labels don't match.")
|
||||
|
||||
|
||||
# check consistency dimensions
|
||||
dim_simplex = len(matrix_labels)
|
||||
if len(simplex_matrix) != dim_simplex + 1:
|
||||
raise ValueError("An n-dimensional simplex is composed by n + 1 tensors of dimension n.")
|
||||
|
||||
raise ValueError(
|
||||
"An n-dimensional simplex is composed by n + 1 tensors of dimension n."
|
||||
)
|
||||
|
||||
# creating vertices matrix
|
||||
self._vertices_matrix = LabelTensor.vstack(simplex_matrix)
|
||||
|
||||
@@ -86,8 +92,10 @@ class SimplexDomain(Location):
|
||||
for i, coord in enumerate(self.variables):
|
||||
sorted_vertices = sorted(vertices, key=lambda vertex: vertex[i])
|
||||
# respective coord bounded by the lowest and highest values
|
||||
span_dict[coord] = [float(sorted_vertices[0][i]),
|
||||
float(sorted_vertices[-1][i])]
|
||||
span_dict[coord] = [
|
||||
float(sorted_vertices[0][i]),
|
||||
float(sorted_vertices[-1][i])
|
||||
]
|
||||
|
||||
return CartesianDomain(span_dict)
|
||||
|
||||
@@ -96,31 +104,32 @@ class SimplexDomain(Location):
|
||||
Check if a point is inside the simplex.
|
||||
Uses the algorithm described involving barycentric coordinates:
|
||||
https://en.wikipedia.org/wiki/Barycentric_coordinate_system.
|
||||
.. note::
|
||||
When ```'sample_surface'``` in the ```'__init()__'```
|
||||
is set to ```'True'```, then the method only checks
|
||||
points on the surface, and not inside the domain.
|
||||
|
||||
:param point: Point to be checked.
|
||||
:type point: LabelTensor
|
||||
:param check_border: Check if the point is also on the frontier
|
||||
of the simplex, default False.
|
||||
of the simplex, default ``False``.
|
||||
:type check_border: bool
|
||||
:return: Returning True if the point is inside, False otherwise.
|
||||
:return: Returning ``True`` if the point is inside, ``False`` otherwise.
|
||||
:rtype: bool
|
||||
|
||||
.. note::
|
||||
When ``sample_surface`` in the ``__init()__``
|
||||
is set to ``True``, then the method only checks
|
||||
points on the surface, and not inside the domain.
|
||||
"""
|
||||
|
||||
if not all(label in self.variables for label in point.labels):
|
||||
raise ValueError(
|
||||
"Point labels different from constructor"
|
||||
f" dictionary labels. Got {point.labels},"
|
||||
f" expected {self.variables}."
|
||||
)
|
||||
raise ValueError("Point labels different from constructor"
|
||||
f" dictionary labels. Got {point.labels},"
|
||||
f" expected {self.variables}.")
|
||||
|
||||
point_shift = point - self._vertices_matrix[-1]
|
||||
point_shift = point_shift.tensor.reshape(-1, 1)
|
||||
|
||||
# compute barycentric coordinates
|
||||
lambda_ = torch.linalg.solve(self._vectors_shifted * 1.0, point_shift * 1.0)
|
||||
lambda_ = torch.linalg.solve(self._vectors_shifted * 1.0,
|
||||
point_shift * 1.0)
|
||||
lambda_1 = 1.0 - torch.sum(lambda_)
|
||||
lambdas = torch.vstack([lambda_, lambda_1])
|
||||
|
||||
@@ -128,16 +137,15 @@ class SimplexDomain(Location):
|
||||
if not check_border:
|
||||
return all(torch.gt(lambdas, 0.0)) and all(torch.lt(lambdas, 1.0))
|
||||
|
||||
return all(torch.ge(lambdas, 0)) and (
|
||||
any(torch.eq(lambdas, 0)) or any(torch.eq(lambdas, 1))
|
||||
)
|
||||
return all(torch.ge(lambdas, 0)) and (any(torch.eq(lambdas, 0))
|
||||
or any(torch.eq(lambdas, 1)))
|
||||
|
||||
def _sample_interior_randomly(self, n, variables):
|
||||
"""
|
||||
Randomly sample points inside a simplex of arbitrary
|
||||
dimension, without the boundary.
|
||||
:param int n: Number of points to sample in the shape.
|
||||
:param variables: pinn variable to be sampled, defaults to 'all'.
|
||||
:param variables: pinn variable to be sampled, defaults to ``all``.
|
||||
:type variables: str or list[str], optional
|
||||
:return: Returns tensor of n sampled points.
|
||||
:rtype: torch.Tensor
|
||||
@@ -155,9 +163,9 @@ class SimplexDomain(Location):
|
||||
|
||||
sampled_points = []
|
||||
while len(sampled_points) < n:
|
||||
sampled_point = self._cartesian_bound.sample(
|
||||
n=1, mode="random", variables=variables
|
||||
)
|
||||
sampled_point = self._cartesian_bound.sample(n=1,
|
||||
mode="random",
|
||||
variables=variables)
|
||||
|
||||
if self.is_inside(sampled_point, self._sample_surface):
|
||||
sampled_points.append(sampled_point)
|
||||
@@ -188,7 +196,9 @@ class SimplexDomain(Location):
|
||||
# extract number of vertices
|
||||
number_of_vertices = self._vertices_matrix.shape[0]
|
||||
# extract idx lambda to set to zero randomly
|
||||
idx_lambda = torch.randint(low=0, high=number_of_vertices, size=(1,))
|
||||
idx_lambda = torch.randint(low=0,
|
||||
high=number_of_vertices,
|
||||
size=(1, ))
|
||||
# build lambda vector
|
||||
# 1. sampling [1, 2)
|
||||
lambdas = torch.rand((number_of_vertices, 1))
|
||||
@@ -203,13 +213,14 @@ class SimplexDomain(Location):
|
||||
def sample(self, n, mode="random", variables="all"):
|
||||
"""
|
||||
Sample n points from Simplex domain.
|
||||
|
||||
:param int n: Number of points to sample in the shape.
|
||||
:param str mode: Mode for sampling, defaults to 'random'.
|
||||
Available modes include: 'random'.
|
||||
:param variables: pinn variable to be sampled, defaults to 'all'.
|
||||
:type variables: str or list[str], optional
|
||||
:return: Returns LabelTensor of n sampled points
|
||||
:rtype: LabelTensor(tensor)
|
||||
:param str mode: Mode for sampling, defaults to ``random``. Available modes include: ``random``.
|
||||
:param variables: Variables to be sampled, defaults to ``all``.
|
||||
:type variables: str | list[str]
|
||||
:return: Returns ``LabelTensor`` of n sampled points.
|
||||
:rtype: LabelTensor
|
||||
|
||||
.. warning::
|
||||
When ``sample_surface = True`` in the initialization, all
|
||||
the variables are sampled, despite passing different once
|
||||
@@ -225,4 +236,4 @@ class SimplexDomain(Location):
|
||||
else:
|
||||
raise NotImplementedError(f"mode={mode} is not implemented.")
|
||||
|
||||
return LabelTensor(sample_pts, labels=self.variables)
|
||||
return LabelTensor(sample_pts, labels=self.variables)
|
||||
Reference in New Issue
Block a user