Documentation for v0.1 version (#199)

* Adding Equations, solving typos
* improve _code.rst
* the team rst and restuctore index.rst
* fixing errors

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
Dario Coscia
2023-11-08 14:39:00 +01:00
committed by Nicola Demo
parent 3f9305d475
commit 8b7b61b3bd
144 changed files with 2741 additions and 1766 deletions

View File

@@ -13,14 +13,19 @@ class FourierBlock1D(nn.Module):
.. seealso::
**Original reference**: Li, Zongyi, et al.
"Fourier neural operator for parametric partial
differential equations." arXiv preprint
arXiv:2010.08895 (2020)
<https://arxiv.org/abs/2010.08895.pdf>`_.
**Original reference**: Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B.,
Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). *Fourier neural operator for
parametric partial differential equations*.
DOI: `arXiv preprint arXiv:2010.08895.
<https://arxiv.org/abs/2010.08895>`_
"""
def __init__(self, input_numb_fields, output_numb_fields, n_modes, activation=torch.nn.Tanh):
def __init__(self,
input_numb_fields,
output_numb_fields,
n_modes,
activation=torch.nn.Tanh):
super().__init__()
"""
PINA implementation of Fourier block one dimension. The module computes
@@ -43,12 +48,13 @@ class FourierBlock1D(nn.Module):
check_consistency(activation(), nn.Module)
# assign variables
self._spectral_conv = SpectralConvBlock1D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=n_modes)
self._spectral_conv = SpectralConvBlock1D(
input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=n_modes)
self._activation = activation()
self._linear = nn.Conv1d(input_numb_fields, output_numb_fields, 1)
def forward(self, x):
"""
Forward computation for Fourier Block. It performs a spectral
@@ -74,13 +80,18 @@ class FourierBlock2D(nn.Module):
.. seealso::
**Original reference**: Li, Zongyi, et al.
"Fourier neural operator for parametric partial
differential equations." arXiv preprint
*Fourier neural operator for parametric partial
differential equations*. arXiv preprint
arXiv:2010.08895 (2020)
<https://arxiv.org/abs/2010.08895.pdf>`_.
"""
def __init__(self, input_numb_fields, output_numb_fields, n_modes, activation=torch.nn.Tanh):
def __init__(self,
input_numb_fields,
output_numb_fields,
n_modes,
activation=torch.nn.Tanh):
"""
PINA implementation of Fourier block two dimensions. The module computes
the spectral convolution of the input with a linear kernel in the
@@ -104,12 +115,13 @@ class FourierBlock2D(nn.Module):
check_consistency(activation(), nn.Module)
# assign variables
self._spectral_conv = SpectralConvBlock2D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=n_modes)
self._spectral_conv = SpectralConvBlock2D(
input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=n_modes)
self._activation = activation()
self._linear = nn.Conv2d(input_numb_fields, output_numb_fields, 1)
def forward(self, x):
"""
Forward computation for Fourier Block. It performs a spectral
@@ -135,13 +147,18 @@ class FourierBlock3D(nn.Module):
.. seealso::
**Original reference**: Li, Zongyi, et al.
"Fourier neural operator for parametric partial
differential equations." arXiv preprint
*Fourier neural operator for parametric partial
differential equations*. arXiv preprint
arXiv:2010.08895 (2020)
<https://arxiv.org/abs/2010.08895.pdf>`_.
"""
def __init__(self, input_numb_fields, output_numb_fields, n_modes, activation=torch.nn.Tanh):
def __init__(self,
input_numb_fields,
output_numb_fields,
n_modes,
activation=torch.nn.Tanh):
"""
PINA implementation of Fourier block three dimensions. The module computes
the spectral convolution of the input with a linear kernel in the
@@ -166,12 +183,13 @@ class FourierBlock3D(nn.Module):
check_consistency(activation(), nn.Module)
# assign variables
self._spectral_conv = SpectralConvBlock3D(input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=n_modes)
self._spectral_conv = SpectralConvBlock3D(
input_numb_fields=input_numb_fields,
output_numb_fields=output_numb_fields,
n_modes=n_modes)
self._activation = activation()
self._linear = nn.Conv3d(input_numb_fields, output_numb_fields, 1)
def forward(self, x):
"""
Forward computation for Fourier Block. It performs a spectral