Documentation for v0.1 version (#199)
* Adding Equations, solving typos * improve _code.rst * the team rst and restuctore index.rst * fixing errors --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
3f9305d475
commit
8b7b61b3bd
@@ -13,14 +13,19 @@ class FourierBlock1D(nn.Module):
|
||||
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Li, Zongyi, et al.
|
||||
"Fourier neural operator for parametric partial
|
||||
differential equations." arXiv preprint
|
||||
arXiv:2010.08895 (2020)
|
||||
<https://arxiv.org/abs/2010.08895.pdf>`_.
|
||||
**Original reference**: Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B.,
|
||||
Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). *Fourier neural operator for
|
||||
parametric partial differential equations*.
|
||||
DOI: `arXiv preprint arXiv:2010.08895.
|
||||
<https://arxiv.org/abs/2010.08895>`_
|
||||
|
||||
"""
|
||||
def __init__(self, input_numb_fields, output_numb_fields, n_modes, activation=torch.nn.Tanh):
|
||||
|
||||
def __init__(self,
|
||||
input_numb_fields,
|
||||
output_numb_fields,
|
||||
n_modes,
|
||||
activation=torch.nn.Tanh):
|
||||
super().__init__()
|
||||
"""
|
||||
PINA implementation of Fourier block one dimension. The module computes
|
||||
@@ -43,12 +48,13 @@ class FourierBlock1D(nn.Module):
|
||||
check_consistency(activation(), nn.Module)
|
||||
|
||||
# assign variables
|
||||
self._spectral_conv = SpectralConvBlock1D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=n_modes)
|
||||
self._spectral_conv = SpectralConvBlock1D(
|
||||
input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=n_modes)
|
||||
self._activation = activation()
|
||||
self._linear = nn.Conv1d(input_numb_fields, output_numb_fields, 1)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward computation for Fourier Block. It performs a spectral
|
||||
@@ -74,13 +80,18 @@ class FourierBlock2D(nn.Module):
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Li, Zongyi, et al.
|
||||
"Fourier neural operator for parametric partial
|
||||
differential equations." arXiv preprint
|
||||
*Fourier neural operator for parametric partial
|
||||
differential equations*. arXiv preprint
|
||||
arXiv:2010.08895 (2020)
|
||||
<https://arxiv.org/abs/2010.08895.pdf>`_.
|
||||
|
||||
"""
|
||||
def __init__(self, input_numb_fields, output_numb_fields, n_modes, activation=torch.nn.Tanh):
|
||||
|
||||
def __init__(self,
|
||||
input_numb_fields,
|
||||
output_numb_fields,
|
||||
n_modes,
|
||||
activation=torch.nn.Tanh):
|
||||
"""
|
||||
PINA implementation of Fourier block two dimensions. The module computes
|
||||
the spectral convolution of the input with a linear kernel in the
|
||||
@@ -104,12 +115,13 @@ class FourierBlock2D(nn.Module):
|
||||
check_consistency(activation(), nn.Module)
|
||||
|
||||
# assign variables
|
||||
self._spectral_conv = SpectralConvBlock2D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=n_modes)
|
||||
self._spectral_conv = SpectralConvBlock2D(
|
||||
input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=n_modes)
|
||||
self._activation = activation()
|
||||
self._linear = nn.Conv2d(input_numb_fields, output_numb_fields, 1)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward computation for Fourier Block. It performs a spectral
|
||||
@@ -135,13 +147,18 @@ class FourierBlock3D(nn.Module):
|
||||
.. seealso::
|
||||
|
||||
**Original reference**: Li, Zongyi, et al.
|
||||
"Fourier neural operator for parametric partial
|
||||
differential equations." arXiv preprint
|
||||
*Fourier neural operator for parametric partial
|
||||
differential equations*. arXiv preprint
|
||||
arXiv:2010.08895 (2020)
|
||||
<https://arxiv.org/abs/2010.08895.pdf>`_.
|
||||
|
||||
"""
|
||||
def __init__(self, input_numb_fields, output_numb_fields, n_modes, activation=torch.nn.Tanh):
|
||||
|
||||
def __init__(self,
|
||||
input_numb_fields,
|
||||
output_numb_fields,
|
||||
n_modes,
|
||||
activation=torch.nn.Tanh):
|
||||
"""
|
||||
PINA implementation of Fourier block three dimensions. The module computes
|
||||
the spectral convolution of the input with a linear kernel in the
|
||||
@@ -166,12 +183,13 @@ class FourierBlock3D(nn.Module):
|
||||
check_consistency(activation(), nn.Module)
|
||||
|
||||
# assign variables
|
||||
self._spectral_conv = SpectralConvBlock3D(input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=n_modes)
|
||||
self._spectral_conv = SpectralConvBlock3D(
|
||||
input_numb_fields=input_numb_fields,
|
||||
output_numb_fields=output_numb_fields,
|
||||
n_modes=n_modes)
|
||||
self._activation = activation()
|
||||
self._linear = nn.Conv3d(input_numb_fields, output_numb_fields, 1)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Forward computation for Fourier Block. It performs a spectral
|
||||
|
||||
Reference in New Issue
Block a user