Documentation for v0.1 version (#199)

* Adding Equations, solving typos
* improve _code.rst
* the team rst and restuctore index.rst
* fixing errors

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
Dario Coscia
2023-11-08 14:39:00 +01:00
committed by Nicola Demo
parent 3f9305d475
commit 8b7b61b3bd
144 changed files with 2741 additions and 1766 deletions

View File

@@ -1,8 +1,12 @@
__all__ = [
'PINN',
'GAROM',
'SupervisedSolver',
'SolverInterface'
]
from .garom import GAROM
from .pinn import PINN
from .supervised import SupervisedSolver
from .solver import SolverInterface

View File

@@ -4,7 +4,7 @@ import torch
try:
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
except ImportError:
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0
from torch.optim.lr_scheduler import ConstantLR
from .solver import SolverInterface
@@ -22,28 +22,36 @@ class GAROM(SolverInterface):
.. seealso::
**Original reference**: Coscia, D., Demo, N., & Rozza, G. (2023).
Generative Adversarial Reduced Order Modelling.
arXiv preprint arXiv:2305.15881.
*Generative Adversarial Reduced Order Modelling*.
DOI: `arXiv preprint arXiv:2305.15881.
<https://doi.org/10.48550/arXiv.2305.15881>`_.
"""
def __init__(self,
problem,
generator,
discriminator,
extra_features=None,
loss = None,
optimizer_generator=torch.optim.Adam,
optimizer_generator_kwargs={'lr' : 0.001},
optimizer_discriminator=torch.optim.Adam,
optimizer_discriminator_kwargs={'lr' : 0.001},
scheduler_generator=ConstantLR,
scheduler_generator_kwargs={"factor": 1, "total_iters": 0},
scheduler_discriminator=ConstantLR,
scheduler_discriminator_kwargs={"factor": 1, "total_iters": 0},
gamma = 0.3,
lambda_k = 0.001,
regularizer = False,
):
def __init__(
self,
problem,
generator,
discriminator,
extra_features=None,
loss=None,
optimizer_generator=torch.optim.Adam,
optimizer_generator_kwargs={'lr': 0.001},
optimizer_discriminator=torch.optim.Adam,
optimizer_discriminator_kwargs={'lr': 0.001},
scheduler_generator=ConstantLR,
scheduler_generator_kwargs={
"factor": 1,
"total_iters": 0
},
scheduler_discriminator=ConstantLR,
scheduler_discriminator_kwargs={
"factor": 1,
"total_iters": 0
},
gamma=0.3,
lambda_k=0.001,
regularizer=False,
):
"""
:param AbstractProblem problem: The formualation of the problem.
:param torch.nn.Module generator: The neural network model to use
@@ -77,11 +85,11 @@ class GAROM(SolverInterface):
rate scheduler for the discriminator.
:param dict scheduler_discriminator_kwargs: LR scheduler constructor keyword args.
:param gamma: Ratio of expected loss for generator and discriminator, defaults to 0.3.
:type gamma: float, optional
:type gamma: float
:param lambda_k: Learning rate for control theory optimization, defaults to 0.001.
:type lambda_k: float, optional
:type lambda_k: float
:param regularizer: Regularization term in the GAROM loss, defaults to False.
:type regularizer: bool, optional
:type regularizer: bool
.. warning::
The algorithm works only for data-driven model. Hence in the ``problem`` definition
@@ -90,22 +98,27 @@ class GAROM(SolverInterface):
"""
if isinstance(extra_features, dict):
extra_features = [extra_features['generator'], extra_features['discriminator']]
extra_features = [
extra_features['generator'], extra_features['discriminator']
]
super().__init__(
models=[generator, discriminator],
problem=problem,
extra_features=extra_features,
optimizers=[optimizer_generator, optimizer_discriminator],
optimizers_kwargs=[
optimizer_generator_kwargs, optimizer_discriminator_kwargs
])
super().__init__(models=[generator, discriminator],
problem=problem,
extra_features=extra_features,
optimizers=[optimizer_generator, optimizer_discriminator],
optimizers_kwargs=[optimizer_generator_kwargs, optimizer_discriminator_kwargs])
# set automatic optimization for GANs
self.automatic_optimization = False
# set loss
if loss is None:
loss = PowerLoss(p=1)
# check consistency
# check consistency
check_consistency(scheduler_generator, LRScheduler, subclass=True)
check_consistency(scheduler_generator_kwargs, dict)
check_consistency(scheduler_discriminator, LRScheduler, subclass=True)
@@ -134,6 +147,20 @@ class GAROM(SolverInterface):
self.regularizer = float(regularizer)
def forward(self, x, mc_steps=20, variance=False):
"""
Forward step for GAROM solver
:param x: The input tensor.
:type x: torch.Tensor
:param mc_steps: Number of montecarlo samples to approximate the
expected value, defaults to 20.
:type mc_steps: int
:param variance: Returining also the sample variance of the solution, defaults to False.
:type variance: bool
:return: The expected value of the generator distribution. If ``variance=True`` also the
sample variance is returned.
:rtype: torch.Tensor | tuple(torch.Tensor, torch.Tensor)
"""
# sampling
field_sample = [self.sample(x) for _ in range(mc_steps)]
@@ -147,10 +174,11 @@ class GAROM(SolverInterface):
return mean, var
return mean
def configure_optimizers(self):
"""Optimizer configuration for the GAROM
solver.
"""
Optimizer configuration for the GAROM
solver.
:return: The optimizers and the schedulers
:rtype: tuple(list, list)
@@ -220,7 +248,7 @@ class GAROM(SolverInterface):
return diff
def training_step(self, batch, batch_idx):
"""PINN solver training step.
"""GAROM solver training step.
:param batch: The batch element in the dataloader.
:type batch: tuple
@@ -265,27 +293,27 @@ class GAROM(SolverInterface):
self.log('stability_metric', float(d_loss_real + torch.abs(diff)), prog_bar=True, logger=True, on_epoch=True, on_step=False)
return
@property
def generator(self):
return self.models[0]
@property
def discriminator(self):
return self.models[1]
@property
def optimizer_generator(self):
return self.optimizers[0]
@property
def optimizer_discriminator(self):
return self.optimizers[1]
@property
def scheduler_generator(self):
return self._schedulers[0]
@property
def scheduler_discriminator(self):
return self._schedulers[1]

View File

@@ -3,7 +3,7 @@ import torch
try:
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
except ImportError:
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0
from torch.optim.lr_scheduler import ConstantLR
@@ -13,7 +13,6 @@ from ..utils import check_consistency
from ..loss import LossInterface
from torch.nn.modules.loss import _Loss
torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
@@ -30,27 +29,31 @@ class PINN(SolverInterface):
Physics-informed machine learning. Nature Reviews Physics, 3(6), 422-440.
<https://doi.org/10.1038/s42254-021-00314-5>`_.
"""
def __init__(self,
problem,
model,
extra_features=None,
loss = torch.nn.MSELoss(),
optimizer=torch.optim.Adam,
optimizer_kwargs={'lr' : 0.001},
scheduler=ConstantLR,
scheduler_kwargs={"factor": 1, "total_iters": 0},
):
def __init__(
self,
problem,
model,
extra_features=None,
loss=torch.nn.MSELoss(),
optimizer=torch.optim.Adam,
optimizer_kwargs={'lr': 0.001},
scheduler=ConstantLR,
scheduler_kwargs={
"factor": 1,
"total_iters": 0
},
):
'''
:param AbstractProblem problem: The formualation of the problem.
:param torch.nn.Module model: The neural network model to use.
:param torch.nn.Module loss: The loss function used as minimizer,
default torch.nn.MSELoss().
default :class:`torch.nn.MSELoss`.
:param torch.nn.Module extra_features: The additional input
features to use as augmented input.
:param torch.optim.Optimizer optimizer: The neural network optimizer to
use; default is `torch.optim.Adam`.
use; default is :class:`torch.optim.Adam`.
:param dict optimizer_kwargs: Optimizer constructor keyword args.
:param float lr: The learning rate; default is 0.001.
:param torch.optim.LRScheduler scheduler: Learning
rate scheduler.
:param dict scheduler_kwargs: LR scheduler constructor keyword args.
@@ -60,8 +63,8 @@ class PINN(SolverInterface):
optimizers=[optimizer],
optimizers_kwargs=[optimizer_kwargs],
extra_features=extra_features)
# check consistency
# check consistency
check_consistency(scheduler, LRScheduler, subclass=True)
check_consistency(scheduler_kwargs, dict)
check_consistency(loss, (LossInterface, _Loss), subclass=False)
@@ -71,14 +74,14 @@ class PINN(SolverInterface):
self._loss = loss
self._neural_net = self.models[0]
def forward(self, x):
"""Forward pass implementation for the PINN
solver.
"""
Forward pass implementation for the PINN
solver.
:param torch.tensor x: Input data.
:param torch.Tensor x: Input tensor.
:return: PINN solution.
:rtype: torch.tensor
:rtype: torch.Tensor
"""
# extract labels
x = x.extract(self.problem.input_variables)
@@ -89,8 +92,9 @@ class PINN(SolverInterface):
return output
def configure_optimizers(self):
"""Optimizer configuration for the PINN
solver.
"""
Optimizer configuration for the PINN
solver.
:return: The optimizers and the schedulers
:rtype: tuple(list, list)
@@ -107,7 +111,8 @@ class PINN(SolverInterface):
def training_step(self, batch, batch_idx):
"""PINN solver training step.
"""
PINN solver training step.
:param batch: The batch element in the dataloader.
:type batch: tuple
@@ -159,17 +164,17 @@ class PINN(SolverInterface):
Scheduler for the PINN training.
"""
return self._scheduler
@property
def neural_net(self):
"""
Neural network for the PINN training.
"""
return self._neural_net
@property
def loss(self):
"""
Loss for the PINN training.
"""
return self._loss
return self._loss

View File

@@ -2,30 +2,38 @@
from abc import ABCMeta, abstractmethod
from ..model.network import Network
import pytorch_lightning as pl
import pytorch_lightning
from ..utils import check_consistency
from ..problem import AbstractProblem
import torch
class SolverInterface(pl.LightningModule, metaclass=ABCMeta):
""" Solver base class. """
class SolverInterface(pytorch_lightning.LightningModule, metaclass=ABCMeta):
"""
Solver base class. This class inherits is a wrapper of
LightningModule class, inheriting all the
LightningModule methods.
"""
def __init__(self,
models,
problem,
optimizers,
optimizers_kwargs,
optimizers,
optimizers_kwargs,
extra_features=None):
"""
:param models: A torch neural network model instance.
:type models: torch.nn.Module
:param problem: A problem definition instance.
:type problem: AbstractProblem
:param list(torch.nn.Module) extra_features: the additional input
features to use as augmented input. If ``None`` no extra features
are passed. If it is a list of ``torch.nn.Module``, the extra feature
list is passed to all models. If it is a list of extra features' lists,
each single list of extra feature is passed to a model.
:param list(torch.optim.Optimizer) optimizer: A list of neural network optimizers to
use.
:param list(dict) optimizer_kwargs: A list of optimizer constructor keyword args.
:param list(torch.nn.Module) extra_features: The additional input
features to use as augmented input. If ``None`` no extra features
are passed. If it is a list of :class:`torch.nn.Module`, the extra feature
list is passed to all models. If it is a list of extra features' lists,
each single list of extra feature is passed to a model.
"""
super().__init__()
@@ -52,37 +60,40 @@ class SolverInterface(pl.LightningModule, metaclass=ABCMeta):
raise ValueError('You must define one optimizer for each model.'
f'Got {len_model} models, and {len_optimizer}'
' optimizers.')
# check length consistency optimizers kwargs
if len_optimizer_kwargs != len_optimizer:
raise ValueError('You must define one dictionary of keyword'
' arguments for each optimizers.'
f'Got {len_optimizer} optimizers, and'
f' {len_optimizer_kwargs} dicitionaries')
# extra features handling
if extra_features is None:
if extra_features is None:
extra_features = [None] * len_model
else:
# if we only have a list of extra features
if not isinstance(extra_features[0], (tuple, list)):
extra_features = [extra_features] * len_model
else: # if we have a list of list extra features
else: # if we have a list of list extra features
if len(extra_features) != len_model:
raise ValueError('You passed a list of extrafeatures list with len'
f'different of models len. Expected {len_model} '
f'got {len(extra_features)}. If you want to use'
'the same list of extra features for all models, '
'just pass a list of extrafeatures and not a list '
'of list of extra features.')
raise ValueError(
'You passed a list of extrafeatures list with len'
f'different of models len. Expected {len_model} '
f'got {len(extra_features)}. If you want to use'
'the same list of extra features for all models, '
'just pass a list of extrafeatures and not a list '
'of list of extra features.')
# assigning model and optimizers
self._pina_models = []
self._pina_optimizers = []
for idx in range(len_model):
model_ = Network(model=models[idx], extra_features=extra_features[idx])
optim_ = optimizers[idx](model_.parameters(), **optimizers_kwargs[idx])
model_ = Network(model=models[idx],
extra_features=extra_features[idx])
optim_ = optimizers[idx](model_.parameters(),
**optimizers_kwargs[idx])
self._pina_models.append(model_)
self._pina_optimizers.append(optim_)
@@ -90,9 +101,9 @@ class SolverInterface(pl.LightningModule, metaclass=ABCMeta):
self._pina_problem = problem
@abstractmethod
def forward(self):
def forward(self, *args, **kwargs):
pass
@abstractmethod
def training_step(self):
pass
@@ -131,4 +142,4 @@ class SolverInterface(pl.LightningModule, metaclass=ABCMeta):
# """
# Set the problem formulation."""
# check_consistency(problem, AbstractProblem, 'pina problem')
# self._problem = problem
# self._problem = problem

View File

@@ -3,7 +3,7 @@ import torch
try:
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
except ImportError:
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0
from torch.optim.lr_scheduler import ConstantLR
@@ -19,25 +19,30 @@ class SupervisedSolver(SolverInterface):
SupervisedSolver solver class. This class implements a SupervisedSolver,
using a user specified ``model`` to solve a specific ``problem``.
"""
def __init__(self,
problem,
model,
extra_features=None,
loss = torch.nn.MSELoss(),
optimizer=torch.optim.Adam,
optimizer_kwargs={'lr' : 0.001},
scheduler=ConstantLR,
scheduler_kwargs={"factor": 1, "total_iters": 0},
):
def __init__(
self,
problem,
model,
extra_features=None,
loss=torch.nn.MSELoss(),
optimizer=torch.optim.Adam,
optimizer_kwargs={'lr': 0.001},
scheduler=ConstantLR,
scheduler_kwargs={
"factor": 1,
"total_iters": 0
},
):
'''
:param AbstractProblem problem: The formualation of the problem.
:param torch.nn.Module model: The neural network model to use.
:param torch.nn.Module loss: The loss function used as minimizer,
default torch.nn.MSELoss().
default :class:`torch.nn.MSELoss`.
:param torch.nn.Module extra_features: The additional input
features to use as augmented input.
:param torch.optim.Optimizer optimizer: The neural network optimizer to
use; default is `torch.optim.Adam`.
use; default is :class:`torch.optim.Adam`.
:param dict optimizer_kwargs: Optimizer constructor keyword args.
:param float lr: The learning rate; default is 0.001.
:param torch.optim.LRScheduler scheduler: Learning
@@ -49,8 +54,8 @@ class SupervisedSolver(SolverInterface):
optimizers=[optimizer],
optimizers_kwargs=[optimizer_kwargs],
extra_features=extra_features)
# check consistency
# check consistency
check_consistency(scheduler, LRScheduler, subclass=True)
check_consistency(scheduler_kwargs, dict)
check_consistency(loss, (LossInterface, _Loss), subclass=False)
@@ -60,13 +65,12 @@ class SupervisedSolver(SolverInterface):
self._loss = loss
self._neural_net = self.models[0]
def forward(self, x):
"""Forward pass implementation for the solver.
:param torch.tensor x: Input data.
:param torch.Tensor x: Input tensor.
:return: Solver solution.
:rtype: torch.tensor
:rtype: torch.Tensor
"""
# extract labels
x = x.extract(self.problem.input_variables)
@@ -83,7 +87,7 @@ class SupervisedSolver(SolverInterface):
:rtype: tuple(list, list)
"""
return self.optimizers, [self.scheduler]
def training_step(self, batch, batch_idx):
"""Solver training step.
@@ -105,9 +109,11 @@ class SupervisedSolver(SolverInterface):
# data loss
if hasattr(condition, 'output_points'):
input_pts, output_pts = samples
loss = self.loss(self.forward(input_pts), output_pts) * condition.data_weight
loss = self.loss(self.forward(input_pts),
output_pts) * condition.data_weight
else:
raise RuntimeError('Supervised solver works only in data-driven mode.')
raise RuntimeError(
'Supervised solver works only in data-driven mode.')
self.log('mean_loss', float(loss), prog_bar=True, logger=True)
return loss
@@ -118,17 +124,17 @@ class SupervisedSolver(SolverInterface):
Scheduler for training.
"""
return self._scheduler
@property
def neural_net(self):
"""
Neural network for training.
"""
return self._neural_net
@property
def loss(self):
"""
Loss for training.
"""
return self._loss
return self._loss