Documentation for v0.1 version (#199)
* Adding Equations, solving typos * improve _code.rst * the team rst and restuctore index.rst * fixing errors --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
3f9305d475
commit
8b7b61b3bd
@@ -3,7 +3,7 @@ import torch
|
||||
try:
|
||||
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
|
||||
except ImportError:
|
||||
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0
|
||||
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0
|
||||
|
||||
from torch.optim.lr_scheduler import ConstantLR
|
||||
|
||||
@@ -13,7 +13,6 @@ from ..utils import check_consistency
|
||||
from ..loss import LossInterface
|
||||
from torch.nn.modules.loss import _Loss
|
||||
|
||||
|
||||
torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
|
||||
|
||||
|
||||
@@ -30,27 +29,31 @@ class PINN(SolverInterface):
|
||||
Physics-informed machine learning. Nature Reviews Physics, 3(6), 422-440.
|
||||
<https://doi.org/10.1038/s42254-021-00314-5>`_.
|
||||
"""
|
||||
def __init__(self,
|
||||
problem,
|
||||
model,
|
||||
extra_features=None,
|
||||
loss = torch.nn.MSELoss(),
|
||||
optimizer=torch.optim.Adam,
|
||||
optimizer_kwargs={'lr' : 0.001},
|
||||
scheduler=ConstantLR,
|
||||
scheduler_kwargs={"factor": 1, "total_iters": 0},
|
||||
):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
problem,
|
||||
model,
|
||||
extra_features=None,
|
||||
loss=torch.nn.MSELoss(),
|
||||
optimizer=torch.optim.Adam,
|
||||
optimizer_kwargs={'lr': 0.001},
|
||||
scheduler=ConstantLR,
|
||||
scheduler_kwargs={
|
||||
"factor": 1,
|
||||
"total_iters": 0
|
||||
},
|
||||
):
|
||||
'''
|
||||
:param AbstractProblem problem: The formualation of the problem.
|
||||
:param torch.nn.Module model: The neural network model to use.
|
||||
:param torch.nn.Module loss: The loss function used as minimizer,
|
||||
default torch.nn.MSELoss().
|
||||
default :class:`torch.nn.MSELoss`.
|
||||
:param torch.nn.Module extra_features: The additional input
|
||||
features to use as augmented input.
|
||||
:param torch.optim.Optimizer optimizer: The neural network optimizer to
|
||||
use; default is `torch.optim.Adam`.
|
||||
use; default is :class:`torch.optim.Adam`.
|
||||
:param dict optimizer_kwargs: Optimizer constructor keyword args.
|
||||
:param float lr: The learning rate; default is 0.001.
|
||||
:param torch.optim.LRScheduler scheduler: Learning
|
||||
rate scheduler.
|
||||
:param dict scheduler_kwargs: LR scheduler constructor keyword args.
|
||||
@@ -60,8 +63,8 @@ class PINN(SolverInterface):
|
||||
optimizers=[optimizer],
|
||||
optimizers_kwargs=[optimizer_kwargs],
|
||||
extra_features=extra_features)
|
||||
|
||||
# check consistency
|
||||
|
||||
# check consistency
|
||||
check_consistency(scheduler, LRScheduler, subclass=True)
|
||||
check_consistency(scheduler_kwargs, dict)
|
||||
check_consistency(loss, (LossInterface, _Loss), subclass=False)
|
||||
@@ -71,14 +74,14 @@ class PINN(SolverInterface):
|
||||
self._loss = loss
|
||||
self._neural_net = self.models[0]
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass implementation for the PINN
|
||||
solver.
|
||||
"""
|
||||
Forward pass implementation for the PINN
|
||||
solver.
|
||||
|
||||
:param torch.tensor x: Input data.
|
||||
:param torch.Tensor x: Input tensor.
|
||||
:return: PINN solution.
|
||||
:rtype: torch.tensor
|
||||
:rtype: torch.Tensor
|
||||
"""
|
||||
# extract labels
|
||||
x = x.extract(self.problem.input_variables)
|
||||
@@ -89,8 +92,9 @@ class PINN(SolverInterface):
|
||||
return output
|
||||
|
||||
def configure_optimizers(self):
|
||||
"""Optimizer configuration for the PINN
|
||||
solver.
|
||||
"""
|
||||
Optimizer configuration for the PINN
|
||||
solver.
|
||||
|
||||
:return: The optimizers and the schedulers
|
||||
:rtype: tuple(list, list)
|
||||
@@ -107,7 +111,8 @@ class PINN(SolverInterface):
|
||||
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
"""PINN solver training step.
|
||||
"""
|
||||
PINN solver training step.
|
||||
|
||||
:param batch: The batch element in the dataloader.
|
||||
:type batch: tuple
|
||||
@@ -159,17 +164,17 @@ class PINN(SolverInterface):
|
||||
Scheduler for the PINN training.
|
||||
"""
|
||||
return self._scheduler
|
||||
|
||||
|
||||
@property
|
||||
def neural_net(self):
|
||||
"""
|
||||
Neural network for the PINN training.
|
||||
"""
|
||||
return self._neural_net
|
||||
|
||||
|
||||
@property
|
||||
def loss(self):
|
||||
"""
|
||||
Loss for the PINN training.
|
||||
"""
|
||||
return self._loss
|
||||
return self._loss
|
||||
|
||||
Reference in New Issue
Block a user