Documentation for v0.1 version (#199)

* Adding Equations, solving typos
* improve _code.rst
* the team rst and restuctore index.rst
* fixing errors

---------

Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
Dario Coscia
2023-11-08 14:39:00 +01:00
committed by Nicola Demo
parent 3f9305d475
commit 8b7b61b3bd
144 changed files with 2741 additions and 1766 deletions

View File

@@ -3,7 +3,7 @@ import torch
try:
from torch.optim.lr_scheduler import LRScheduler # torch >= 2.0
except ImportError:
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler # torch < 2.0
from torch.optim.lr_scheduler import ConstantLR
@@ -19,25 +19,30 @@ class SupervisedSolver(SolverInterface):
SupervisedSolver solver class. This class implements a SupervisedSolver,
using a user specified ``model`` to solve a specific ``problem``.
"""
def __init__(self,
problem,
model,
extra_features=None,
loss = torch.nn.MSELoss(),
optimizer=torch.optim.Adam,
optimizer_kwargs={'lr' : 0.001},
scheduler=ConstantLR,
scheduler_kwargs={"factor": 1, "total_iters": 0},
):
def __init__(
self,
problem,
model,
extra_features=None,
loss=torch.nn.MSELoss(),
optimizer=torch.optim.Adam,
optimizer_kwargs={'lr': 0.001},
scheduler=ConstantLR,
scheduler_kwargs={
"factor": 1,
"total_iters": 0
},
):
'''
:param AbstractProblem problem: The formualation of the problem.
:param torch.nn.Module model: The neural network model to use.
:param torch.nn.Module loss: The loss function used as minimizer,
default torch.nn.MSELoss().
default :class:`torch.nn.MSELoss`.
:param torch.nn.Module extra_features: The additional input
features to use as augmented input.
:param torch.optim.Optimizer optimizer: The neural network optimizer to
use; default is `torch.optim.Adam`.
use; default is :class:`torch.optim.Adam`.
:param dict optimizer_kwargs: Optimizer constructor keyword args.
:param float lr: The learning rate; default is 0.001.
:param torch.optim.LRScheduler scheduler: Learning
@@ -49,8 +54,8 @@ class SupervisedSolver(SolverInterface):
optimizers=[optimizer],
optimizers_kwargs=[optimizer_kwargs],
extra_features=extra_features)
# check consistency
# check consistency
check_consistency(scheduler, LRScheduler, subclass=True)
check_consistency(scheduler_kwargs, dict)
check_consistency(loss, (LossInterface, _Loss), subclass=False)
@@ -60,13 +65,12 @@ class SupervisedSolver(SolverInterface):
self._loss = loss
self._neural_net = self.models[0]
def forward(self, x):
"""Forward pass implementation for the solver.
:param torch.tensor x: Input data.
:param torch.Tensor x: Input tensor.
:return: Solver solution.
:rtype: torch.tensor
:rtype: torch.Tensor
"""
# extract labels
x = x.extract(self.problem.input_variables)
@@ -83,7 +87,7 @@ class SupervisedSolver(SolverInterface):
:rtype: tuple(list, list)
"""
return self.optimizers, [self.scheduler]
def training_step(self, batch, batch_idx):
"""Solver training step.
@@ -105,9 +109,11 @@ class SupervisedSolver(SolverInterface):
# data loss
if hasattr(condition, 'output_points'):
input_pts, output_pts = samples
loss = self.loss(self.forward(input_pts), output_pts) * condition.data_weight
loss = self.loss(self.forward(input_pts),
output_pts) * condition.data_weight
else:
raise RuntimeError('Supervised solver works only in data-driven mode.')
raise RuntimeError(
'Supervised solver works only in data-driven mode.')
self.log('mean_loss', float(loss), prog_bar=True, logger=True)
return loss
@@ -118,17 +124,17 @@ class SupervisedSolver(SolverInterface):
Scheduler for training.
"""
return self._scheduler
@property
def neural_net(self):
"""
Neural network for training.
"""
return self._neural_net
@property
def loss(self):
"""
Loss for training.
"""
return self._loss
return self._loss