Documentation for v0.1 version (#199)
* Adding Equations, solving typos * improve _code.rst * the team rst and restuctore index.rst * fixing errors --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
3f9305d475
commit
8b7b61b3bd
@@ -1,5 +1,3 @@
|
||||
|
||||
|
||||
from pina.callbacks import R3Refinement
|
||||
import torch
|
||||
import pytest
|
||||
@@ -7,7 +5,8 @@ import pytest
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.operators import laplacian
|
||||
from pina.geometry import CartesianDomain
|
||||
from pina import Condition, LabelTensor, PINN
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.solvers import PINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.equation.equation import Equation
|
||||
@@ -15,15 +14,17 @@ from pina.equation.equation_factory import FixedValue
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
|
||||
torch.sin(input_.extract(['y'])*torch.pi))
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
@@ -55,7 +56,8 @@ poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
model = FeedForward(len(poisson_problem.input_variables),len(poisson_problem.output_variables))
|
||||
model = FeedForward(len(poisson_problem.input_variables),
|
||||
len(poisson_problem.output_variables))
|
||||
|
||||
# make the solver
|
||||
solver = PINN(problem=poisson_problem, model=model)
|
||||
@@ -64,8 +66,10 @@ solver = PINN(problem=poisson_problem, model=model)
|
||||
def test_r3constructor():
|
||||
R3Refinement(sample_every=10)
|
||||
|
||||
|
||||
def test_r3refinment_routine():
|
||||
# make the trainer
|
||||
trainer = Trainer(solver=solver, callbacks=[R3Refinement(sample_every=1)], max_epochs=5)
|
||||
trainer = Trainer(solver=solver,
|
||||
callbacks=[R3Refinement(sample_every=1)],
|
||||
max_epochs=5)
|
||||
trainer.train()
|
||||
|
||||
|
||||
@@ -1,5 +1,3 @@
|
||||
|
||||
|
||||
from pina.callbacks import SwitchOptimizer
|
||||
import torch
|
||||
import pytest
|
||||
@@ -7,7 +5,8 @@ import pytest
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.operators import laplacian
|
||||
from pina.geometry import CartesianDomain
|
||||
from pina import Condition, LabelTensor, PINN
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.solvers import PINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.equation.equation import Equation
|
||||
@@ -15,15 +14,17 @@ from pina.equation.equation_factory import FixedValue
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
|
||||
torch.sin(input_.extract(['y'])*torch.pi))
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
@@ -55,7 +56,8 @@ poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
model = FeedForward(len(poisson_problem.input_variables),len(poisson_problem.output_variables))
|
||||
model = FeedForward(len(poisson_problem.input_variables),
|
||||
len(poisson_problem.output_variables))
|
||||
|
||||
# make the solver
|
||||
solver = PINN(problem=poisson_problem, model=model)
|
||||
@@ -63,19 +65,24 @@ solver = PINN(problem=poisson_problem, model=model)
|
||||
|
||||
def test_switch_optimizer_constructor():
|
||||
SwitchOptimizer(new_optimizers=torch.optim.Adam,
|
||||
new_optimizers_kwargs={'lr':0.01},
|
||||
new_optimizers_kwargs={'lr': 0.01},
|
||||
epoch_switch=10)
|
||||
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
SwitchOptimizer(new_optimizers=[torch.optim.Adam, torch.optim.Adam],
|
||||
new_optimizers_kwargs=[{'lr':0.01}],
|
||||
new_optimizers_kwargs=[{
|
||||
'lr': 0.01
|
||||
}],
|
||||
epoch_switch=10)
|
||||
|
||||
|
||||
def test_switch_optimizer_routine():
|
||||
# make the trainer
|
||||
trainer = Trainer(solver=solver, callbacks=[SwitchOptimizer(new_optimizers=torch.optim.LBFGS,
|
||||
new_optimizers_kwargs={'lr':0.01},
|
||||
epoch_switch=3)], max_epochs=5)
|
||||
trainer = Trainer(solver=solver,
|
||||
callbacks=[
|
||||
SwitchOptimizer(new_optimizers=torch.optim.LBFGS,
|
||||
new_optimizers_kwargs={'lr': 0.01},
|
||||
epoch_switch=3)
|
||||
],
|
||||
max_epochs=5)
|
||||
trainer.train()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user