Documentation for v0.1 version (#199)
* Adding Equations, solving typos * improve _code.rst * the team rst and restuctore index.rst * fixing errors --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
3f9305d475
commit
8b7b61b3bd
@@ -10,6 +10,7 @@ def prod(iterable):
|
||||
|
||||
|
||||
def make_grid(x):
|
||||
|
||||
def _transform_image(image):
|
||||
|
||||
# extracting image info
|
||||
@@ -17,11 +18,13 @@ def make_grid(x):
|
||||
|
||||
# initializing transfomed image
|
||||
coordinates = torch.zeros(
|
||||
[channels, prod(dimension), len(dimension) + 1]).to(image.device)
|
||||
[channels, prod(dimension),
|
||||
len(dimension) + 1]).to(image.device)
|
||||
|
||||
# creating the n dimensional mesh grid
|
||||
values_mesh = [torch.arange(0, dim).float().to(
|
||||
image.device) for dim in dimension]
|
||||
values_mesh = [
|
||||
torch.arange(0, dim).float().to(image.device) for dim in dimension
|
||||
]
|
||||
mesh = torch.meshgrid(values_mesh)
|
||||
coordinates_mesh = [x.reshape(-1, 1) for x in mesh]
|
||||
coordinates_mesh.append(0)
|
||||
@@ -40,11 +43,9 @@ class MLP(torch.nn.Module):
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self. model = torch.nn.Sequential(torch.nn.Linear(2, 8),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Linear(8, 8),
|
||||
torch.nn.ReLU(),
|
||||
torch.nn.Linear(8, 1))
|
||||
self.model = torch.nn.Sequential(torch.nn.Linear(2, 8), torch.nn.ReLU(),
|
||||
torch.nn.Linear(8, 8), torch.nn.ReLU(),
|
||||
torch.nn.Linear(8, 1))
|
||||
|
||||
def forward(self, x):
|
||||
return self.model(x)
|
||||
@@ -56,10 +57,12 @@ channel_output = 6
|
||||
batch = 2
|
||||
N = 10
|
||||
dim = [3, 3]
|
||||
stride = {"domain": [10, 10],
|
||||
"start": [0, 0],
|
||||
"jumps": [3, 3],
|
||||
"direction": [1, 1.]}
|
||||
stride = {
|
||||
"domain": [10, 10],
|
||||
"start": [0, 0],
|
||||
"jumps": [3, 3],
|
||||
"direction": [1, 1.]
|
||||
}
|
||||
dim_filter = len(dim)
|
||||
dim_input = (batch, channel_input, 10, dim_filter)
|
||||
dim_output = (batch, channel_output, 4, dim_filter)
|
||||
@@ -71,15 +74,15 @@ def test_constructor():
|
||||
model = MLP
|
||||
|
||||
conv = ContinuousConvBlock(channel_input,
|
||||
channel_output,
|
||||
dim,
|
||||
stride,
|
||||
model=model)
|
||||
channel_output,
|
||||
dim,
|
||||
stride,
|
||||
model=model)
|
||||
conv = ContinuousConvBlock(channel_input,
|
||||
channel_output,
|
||||
dim,
|
||||
stride,
|
||||
model=None)
|
||||
channel_output,
|
||||
dim,
|
||||
stride,
|
||||
model=None)
|
||||
|
||||
|
||||
def test_forward():
|
||||
@@ -87,19 +90,19 @@ def test_forward():
|
||||
|
||||
# simple forward
|
||||
conv = ContinuousConvBlock(channel_input,
|
||||
channel_output,
|
||||
dim,
|
||||
stride,
|
||||
model=model)
|
||||
channel_output,
|
||||
dim,
|
||||
stride,
|
||||
model=model)
|
||||
conv(x)
|
||||
|
||||
# simple forward with optimization
|
||||
conv = ContinuousConvBlock(channel_input,
|
||||
channel_output,
|
||||
dim,
|
||||
stride,
|
||||
model=model,
|
||||
optimize=True)
|
||||
channel_output,
|
||||
dim,
|
||||
stride,
|
||||
model=model,
|
||||
optimize=True)
|
||||
conv(x)
|
||||
|
||||
|
||||
@@ -108,16 +111,16 @@ def test_transpose():
|
||||
|
||||
# simple transpose
|
||||
conv = ContinuousConvBlock(channel_input,
|
||||
channel_output,
|
||||
dim,
|
||||
stride,
|
||||
model=model)
|
||||
channel_output,
|
||||
dim,
|
||||
stride,
|
||||
model=model)
|
||||
|
||||
conv2 = ContinuousConvBlock(channel_output,
|
||||
channel_input,
|
||||
dim,
|
||||
stride,
|
||||
model=model)
|
||||
channel_input,
|
||||
dim,
|
||||
stride,
|
||||
model=model)
|
||||
|
||||
integrals = conv(x)
|
||||
conv2.transpose(integrals[..., -1], x)
|
||||
@@ -137,4 +140,4 @@ def test_transpose():
|
||||
# no_overlap=True)
|
||||
|
||||
# integrals = conv(x)
|
||||
# conv.transpose(integrals[..., -1], x)
|
||||
# conv.transpose(integrals[..., -1], x)
|
||||
|
||||
Reference in New Issue
Block a user