Documentation for v0.1 version (#199)
* Adding Equations, solving typos * improve _code.rst * the team rst and restuctore index.rst * fixing errors --------- Co-authored-by: Dario Coscia <dariocoscia@dhcp-015.eduroam.sissa.it>
This commit is contained in:
committed by
Nicola Demo
parent
3f9305d475
commit
8b7b61b3bd
@@ -15,6 +15,7 @@ def func(x, mu1, mu2):
|
||||
norm = x[:, 0]**2 + x[:, 1]**2
|
||||
return torch.exp(-(x_m1 + x_m2))
|
||||
|
||||
|
||||
class ParametricGaussian(AbstractProblem):
|
||||
output_variables = [f'u_{i}' for i in range(900)]
|
||||
|
||||
@@ -24,7 +25,7 @@ class ParametricGaussian(AbstractProblem):
|
||||
params = LabelTensor(torch.cartesian_prod(xx, yy), labels=['mu1', 'mu2'])
|
||||
|
||||
# define domain
|
||||
x = torch.linspace(-1, 1, 30)
|
||||
x = torch.linspace(-1, 1, 30)
|
||||
domain = torch.cartesian_prod(x, x)
|
||||
triang = tri.Triangulation(domain[:, 0], domain[:, 1])
|
||||
sol = []
|
||||
@@ -34,15 +35,18 @@ class ParametricGaussian(AbstractProblem):
|
||||
|
||||
# define conditions
|
||||
conditions = {
|
||||
'data': Condition(
|
||||
input_points=params,
|
||||
output_points=snapshots)
|
||||
'data': Condition(input_points=params, output_points=snapshots)
|
||||
}
|
||||
|
||||
|
||||
# simple Generator Network
|
||||
class Generator(nn.Module):
|
||||
def __init__(self, input_dimension, parameters_dimension,
|
||||
noise_dimension, activation=torch.nn.SiLU):
|
||||
|
||||
def __init__(self,
|
||||
input_dimension,
|
||||
parameters_dimension,
|
||||
noise_dimension,
|
||||
activation=torch.nn.SiLU):
|
||||
super().__init__()
|
||||
|
||||
self._noise_dimension = noise_dimension
|
||||
@@ -53,13 +57,12 @@ class Generator(nn.Module):
|
||||
self._activation(),
|
||||
torch.nn.Linear(input_dimension // 6, input_dimension // 3),
|
||||
self._activation(),
|
||||
torch.nn.Linear(input_dimension // 3, input_dimension)
|
||||
)
|
||||
torch.nn.Linear(input_dimension // 3, input_dimension))
|
||||
self.condition = torch.nn.Sequential(
|
||||
torch.nn.Linear(parameters_dimension, 2 * self._noise_dimension),
|
||||
self._activation(),
|
||||
torch.nn.Linear(2 * self._noise_dimension, 5 * self._noise_dimension)
|
||||
)
|
||||
torch.nn.Linear(2 * self._noise_dimension,
|
||||
5 * self._noise_dimension))
|
||||
|
||||
def forward(self, param):
|
||||
# uniform sampling in [-1, 1]
|
||||
@@ -78,8 +81,12 @@ class Generator(nn.Module):
|
||||
|
||||
# Simple Discriminator Network
|
||||
class Discriminator(nn.Module):
|
||||
def __init__(self, input_dimension, parameter_dimension,
|
||||
hidden_dimension, activation=torch.nn.ReLU):
|
||||
|
||||
def __init__(self,
|
||||
input_dimension,
|
||||
parameter_dimension,
|
||||
hidden_dimension,
|
||||
activation=torch.nn.ReLU):
|
||||
super().__init__()
|
||||
|
||||
self._activation = activation
|
||||
@@ -88,10 +95,9 @@ class Discriminator(nn.Module):
|
||||
self._activation(),
|
||||
torch.nn.Linear(input_dimension // 3, input_dimension // 6),
|
||||
self._activation(),
|
||||
torch.nn.Linear(input_dimension // 6, hidden_dimension)
|
||||
)
|
||||
torch.nn.Linear(input_dimension // 6, hidden_dimension))
|
||||
self.decoding = torch.nn.Sequential(
|
||||
torch.nn.Linear(2*hidden_dimension, input_dimension // 6),
|
||||
torch.nn.Linear(2 * hidden_dimension, input_dimension // 6),
|
||||
self._activation(),
|
||||
torch.nn.Linear(input_dimension // 6, input_dimension // 3),
|
||||
self._activation(),
|
||||
@@ -101,9 +107,8 @@ class Discriminator(nn.Module):
|
||||
self.condition = torch.nn.Sequential(
|
||||
torch.nn.Linear(parameter_dimension, hidden_dimension // 2),
|
||||
self._activation(),
|
||||
torch.nn.Linear(hidden_dimension // 2, hidden_dimension)
|
||||
)
|
||||
|
||||
torch.nn.Linear(hidden_dimension // 2, hidden_dimension))
|
||||
|
||||
def forward(self, data):
|
||||
x, condition = data
|
||||
encoding = self.encoding(x)
|
||||
@@ -114,49 +119,49 @@ class Discriminator(nn.Module):
|
||||
|
||||
problem = ParametricGaussian()
|
||||
|
||||
|
||||
def test_constructor():
|
||||
GAROM(problem = problem,
|
||||
generator = Generator(input_dimension=900,
|
||||
parameters_dimension=2,
|
||||
noise_dimension=12),
|
||||
discriminator = Discriminator(input_dimension=900,
|
||||
parameter_dimension=2,
|
||||
hidden_dimension=64)
|
||||
)
|
||||
GAROM(problem=problem,
|
||||
generator=Generator(input_dimension=900,
|
||||
parameters_dimension=2,
|
||||
noise_dimension=12),
|
||||
discriminator=Discriminator(input_dimension=900,
|
||||
parameter_dimension=2,
|
||||
hidden_dimension=64))
|
||||
|
||||
|
||||
def test_train_cpu():
|
||||
solver = GAROM(problem = problem,
|
||||
generator = Generator(input_dimension=900,
|
||||
parameters_dimension=2,
|
||||
noise_dimension=12),
|
||||
discriminator = Discriminator(input_dimension=900,
|
||||
parameter_dimension=2,
|
||||
hidden_dimension=64)
|
||||
)
|
||||
solver = GAROM(problem=problem,
|
||||
generator=Generator(input_dimension=900,
|
||||
parameters_dimension=2,
|
||||
noise_dimension=12),
|
||||
discriminator=Discriminator(input_dimension=900,
|
||||
parameter_dimension=2,
|
||||
hidden_dimension=64))
|
||||
|
||||
trainer = Trainer(solver=solver, max_epochs=4, accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
|
||||
def test_sample():
|
||||
solver = GAROM(problem = problem,
|
||||
generator = Generator(input_dimension=900,
|
||||
parameters_dimension=2,
|
||||
noise_dimension=12),
|
||||
discriminator = Discriminator(input_dimension=900,
|
||||
parameter_dimension=2,
|
||||
hidden_dimension=64)
|
||||
)
|
||||
solver = GAROM(problem=problem,
|
||||
generator=Generator(input_dimension=900,
|
||||
parameters_dimension=2,
|
||||
noise_dimension=12),
|
||||
discriminator=Discriminator(input_dimension=900,
|
||||
parameter_dimension=2,
|
||||
hidden_dimension=64))
|
||||
solver.sample(problem.params)
|
||||
assert solver.sample(problem.params).shape == problem.snapshots.shape
|
||||
|
||||
|
||||
def test_forward():
|
||||
solver = GAROM(problem = problem,
|
||||
generator = Generator(input_dimension=900,
|
||||
parameters_dimension=2,
|
||||
noise_dimension=12),
|
||||
discriminator = Discriminator(input_dimension=900,
|
||||
parameter_dimension=2,
|
||||
hidden_dimension=64)
|
||||
)
|
||||
solver = GAROM(problem=problem,
|
||||
generator=Generator(input_dimension=900,
|
||||
parameters_dimension=2,
|
||||
noise_dimension=12),
|
||||
discriminator=Discriminator(input_dimension=900,
|
||||
parameter_dimension=2,
|
||||
hidden_dimension=64))
|
||||
solver(problem.params, mc_steps=100, variance=True)
|
||||
assert solver(problem.params).shape == problem.snapshots.shape
|
||||
assert solver(problem.params).shape == problem.snapshots.shape
|
||||
|
||||
@@ -1,30 +1,31 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.operators import laplacian
|
||||
from pina.geometry import CartesianDomain
|
||||
from pina import Condition, LabelTensor, PINN
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.solvers import PINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
from pina.plotter import Plotter
|
||||
from pina.loss import LpLoss
|
||||
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
force_term = (torch.sin(input_.extract(['x'])*torch.pi) *
|
||||
torch.sin(input_.extract(['y'])*torch.pi))
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
in_ = LabelTensor(torch.tensor([[0., 1.]]), ['x', 'y'])
|
||||
out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
|
||||
in2_ = LabelTensor(torch.rand(60, 2), ['x', 'y'])
|
||||
out2_ = LabelTensor(torch.rand(60, 1), ['u'])
|
||||
|
||||
|
||||
class Poisson(SpatialProblem):
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
@@ -54,42 +55,48 @@ class Poisson(SpatialProblem):
|
||||
}
|
||||
|
||||
def poisson_sol(self, pts):
|
||||
return -(
|
||||
torch.sin(pts.extract(['x'])*torch.pi) *
|
||||
torch.sin(pts.extract(['y'])*torch.pi)
|
||||
)/(2*torch.pi**2)
|
||||
return -(torch.sin(pts.extract(['x']) * torch.pi) *
|
||||
torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi**2)
|
||||
|
||||
truth_solution = poisson_sol
|
||||
|
||||
|
||||
class myFeature(torch.nn.Module):
|
||||
"""
|
||||
Feature: sin(x)
|
||||
"""
|
||||
|
||||
|
||||
def __init__(self):
|
||||
super(myFeature, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
t = (torch.sin(x.extract(['x'])*torch.pi) *
|
||||
torch.sin(x.extract(['y'])*torch.pi))
|
||||
t = (torch.sin(x.extract(['x']) * torch.pi) *
|
||||
torch.sin(x.extract(['y']) * torch.pi))
|
||||
return LabelTensor(t, ['sin(x)sin(y)'])
|
||||
|
||||
|
||||
# make the problem
|
||||
poisson_problem = Poisson()
|
||||
model = FeedForward(len(poisson_problem.input_variables),len(poisson_problem.output_variables))
|
||||
model_extra_feats = FeedForward(len(poisson_problem.input_variables)+1,len(poisson_problem.output_variables))
|
||||
model = FeedForward(len(poisson_problem.input_variables),
|
||||
len(poisson_problem.output_variables))
|
||||
model_extra_feats = FeedForward(
|
||||
len(poisson_problem.input_variables) + 1,
|
||||
len(poisson_problem.output_variables))
|
||||
extra_feats = [myFeature()]
|
||||
|
||||
|
||||
def test_constructor():
|
||||
PINN(problem = poisson_problem, model=model, extra_features=None)
|
||||
PINN(problem=poisson_problem, model=model, extra_features=None)
|
||||
|
||||
|
||||
def test_constructor_extra_feats():
|
||||
model_extra_feats = FeedForward(len(poisson_problem.input_variables)+1,len(poisson_problem.output_variables))
|
||||
PINN(problem = poisson_problem, model=model_extra_feats, extra_features=extra_feats)
|
||||
model_extra_feats = FeedForward(
|
||||
len(poisson_problem.input_variables) + 1,
|
||||
len(poisson_problem.output_variables))
|
||||
PINN(problem=poisson_problem,
|
||||
model=model_extra_feats,
|
||||
extra_features=extra_feats)
|
||||
|
||||
|
||||
def test_train_cpu():
|
||||
poisson_problem = Poisson()
|
||||
@@ -100,14 +107,21 @@ def test_train_cpu():
|
||||
trainer = Trainer(solver=pinn, max_epochs=1, accelerator='cpu', batch_size=20)
|
||||
trainer.train()
|
||||
|
||||
|
||||
def test_train_restore():
|
||||
tmpdir = "tests/tmp_restore"
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu', default_root_dir=tmpdir)
|
||||
pinn = PINN(problem=poisson_problem,
|
||||
model=model,
|
||||
extra_features=None,
|
||||
loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn,
|
||||
max_epochs=5,
|
||||
accelerator='cpu',
|
||||
default_root_dir=tmpdir)
|
||||
trainer.train()
|
||||
ntrainer = Trainer(solver=pinn, max_epochs=15, accelerator='cpu')
|
||||
t = ntrainer.train(
|
||||
@@ -115,31 +129,40 @@ def test_train_restore():
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
|
||||
def test_train_load():
|
||||
tmpdir = "tests/tmp_load"
|
||||
poisson_problem = Poisson()
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn, max_epochs=15, accelerator='cpu',
|
||||
default_root_dir=tmpdir)
|
||||
pinn = PINN(problem=poisson_problem,
|
||||
model=model,
|
||||
extra_features=None,
|
||||
loss=LpLoss())
|
||||
trainer = Trainer(solver=pinn,
|
||||
max_epochs=15,
|
||||
accelerator='cpu',
|
||||
default_root_dir=tmpdir)
|
||||
trainer.train()
|
||||
new_pinn = PINN.load_from_checkpoint(
|
||||
f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=30.ckpt',
|
||||
problem = poisson_problem, model=model)
|
||||
test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10)
|
||||
assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1)
|
||||
assert new_pinn.forward(test_pts).extract(['u']).shape == pinn.forward(test_pts).extract(['u']).shape
|
||||
torch.testing.assert_close(new_pinn.forward(test_pts).extract(['u']), pinn.forward(test_pts).extract(['u']))
|
||||
assert new_pinn.forward(test_pts).extract(
|
||||
['u']).shape == pinn.forward(test_pts).extract(['u']).shape
|
||||
torch.testing.assert_close(
|
||||
new_pinn.forward(test_pts).extract(['u']),
|
||||
pinn.forward(test_pts).extract(['u']))
|
||||
import shutil
|
||||
shutil.rmtree(tmpdir)
|
||||
|
||||
|
||||
|
||||
# # TODO fix asap. Basically sampling few variables
|
||||
# # works only if both variables are in a range.
|
||||
# # if one is fixed and the other not, this will
|
||||
# # not work. This test also needs to be fixed and
|
||||
# # not work. This test also needs to be fixed and
|
||||
# # insert in test problem not in test pinn.
|
||||
# def test_train_cpu_sampling_few_vars():
|
||||
# poisson_problem = Poisson()
|
||||
@@ -158,12 +181,15 @@ def test_train_extra_feats_cpu():
|
||||
boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
n = 10
|
||||
poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
|
||||
pinn = PINN(problem = poisson_problem, model=model_extra_feats, extra_features=extra_feats)
|
||||
pinn = PINN(problem=poisson_problem,
|
||||
model=model_extra_feats,
|
||||
extra_features=extra_feats)
|
||||
trainer = Trainer(solver=pinn, max_epochs=5, accelerator='cpu')
|
||||
trainer.train()
|
||||
|
||||
|
||||
# TODO, fix GitHub actions to run also on GPU
|
||||
# def test_train_gpu():
|
||||
# def test_train_gpu():
|
||||
# poisson_problem = Poisson()
|
||||
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
|
||||
# n = 10
|
||||
@@ -171,7 +197,6 @@ def test_train_extra_feats_cpu():
|
||||
# pinn = PINN(problem = poisson_problem, model=model, extra_features=None, loss=LpLoss())
|
||||
# trainer = Trainer(solver=pinn, kwargs={'max_epochs' : 5, 'accelerator':'gpu'})
|
||||
# trainer.train()
|
||||
|
||||
"""
|
||||
def test_train_gpu(): #TODO fix ASAP
|
||||
poisson_problem = Poisson()
|
||||
|
||||
Reference in New Issue
Block a user