@@ -18,8 +18,7 @@ class DeepONet(torch.nn.Module):
|
||||
<https://doi.org/10.1038/s42256-021-00302-5>`_
|
||||
|
||||
"""
|
||||
def __init__(self, branch_net, trunk_net, output_variables, inner_size=10,
|
||||
features=None, features_net=None):
|
||||
def __init__(self, branch_net, trunk_net, output_variables, inner_size=10):
|
||||
"""
|
||||
:param torch.nn.Module branch_net: the neural network to use as branch
|
||||
model. It has to take as input a :class:`LabelTensor`. The number
|
||||
@@ -30,6 +29,8 @@ class DeepONet(torch.nn.Module):
|
||||
:param list(str) output_variables: the list containing the labels
|
||||
corresponding to the components of the output computed by the
|
||||
model.
|
||||
:param int inner_size: the output dimension of the branch and trunk
|
||||
networks. Default is 10.
|
||||
|
||||
:Example:
|
||||
>>> branch = FFN(input_variables=['a', 'c'], output_variables=20)
|
||||
@@ -74,22 +75,6 @@ class DeepONet(torch.nn.Module):
|
||||
self.trunk_net = trunk_net
|
||||
self.branch_net = branch_net
|
||||
|
||||
# if features:
|
||||
# if len(features) != features_net.layers[0].in_features:
|
||||
# raise ValueError('Incompatible features')
|
||||
# if trunk_out_dim != features_net.layers[-1].out_features:
|
||||
# raise ValueError('Incompatible features')
|
||||
|
||||
# self.features = features
|
||||
# self.features_net = nn.Sequential(
|
||||
# nn.Linear(len(features), 10), nn.Softplus(),
|
||||
# # nn.Linear(10, 10), nn.Softplus(),
|
||||
# nn.Linear(10, trunk_out_dim)
|
||||
# )
|
||||
# self.features_net = nn.Sequential(
|
||||
# nn.Linear(len(features), trunk_out_dim)
|
||||
# )
|
||||
|
||||
self.reduction = nn.Linear(trunk_out_dim, self.output_dimension)
|
||||
|
||||
@property
|
||||
@@ -105,41 +90,16 @@ class DeepONet(torch.nn.Module):
|
||||
:return: the output computed by the model.
|
||||
:rtype: LabelTensor
|
||||
"""
|
||||
# print(x.shape)
|
||||
#input_feature = []
|
||||
#for feature in self.features:
|
||||
# #print(feature)
|
||||
# input_feature.append(feature(x))
|
||||
#input_feature = torch.cat(input_feature, dim=1)
|
||||
|
||||
branch_output = self.branch_net(
|
||||
x.extract(self.branch_net.input_variables))
|
||||
# print(branch_output.shape)
|
||||
|
||||
trunk_output = self.trunk_net(
|
||||
x.extract(self.trunk_net.input_variables))
|
||||
# print(trunk_output.shape)
|
||||
#feat_output = self.features_net(input_feature)
|
||||
# print(feat_output.shape)
|
||||
# inner_input = torch.cat([
|
||||
# branch_output * trunk_output,
|
||||
# branch_output,
|
||||
# trunk_output,
|
||||
# feat_output], dim=1)
|
||||
# print(inner_input.shape)
|
||||
|
||||
# output_ = self.reduction(inner_input)
|
||||
# print(output_.shape)
|
||||
output_ = self.reduction(trunk_output * branch_output)
|
||||
# output_ = LabelTensor(output_, self.output_variables)
|
||||
|
||||
output_ = output_.as_subclass(LabelTensor)
|
||||
output_.labels = self.output_variables
|
||||
# local_size = int(trunk_output.shape[1]/self.output_dimension)
|
||||
# for i, var in enumerate(self.output_variables):
|
||||
# start = i*local_size
|
||||
# stop = (i+1)*local_size
|
||||
# local_output = LabelTensor(torch.sum(branch_output[:, start:stop] * trunk_output[:, start:stop], dim=1).reshape(-1, 1), var)
|
||||
# if i==0:
|
||||
# output_ = local_output
|
||||
# else:
|
||||
# output_ = output_.append(local_output)
|
||||
|
||||
return output_
|
||||
|
||||
Reference in New Issue
Block a user