CPU/GPU/TPU training (#159)
* device training --------- Co-authored-by: Dario Coscia <dcoscia@lovelace.maths.sissa.it> Co-authored-by: Dario Coscia <dariocoscia@Dario-Coscia.local>
This commit is contained in:
committed by
Nicola Demo
parent
38ecebd44b
commit
92e0e4920b
@@ -111,7 +111,7 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
continue
|
||||
self.input_pts[condition_name] = samples
|
||||
|
||||
def discretise_domain(self, n, mode = 'random', variables = 'all', locations = 'all', device=None):
|
||||
def discretise_domain(self, n, mode = 'random', variables = 'all', locations = 'all'):
|
||||
"""
|
||||
Generate a set of points to span the `Location` of all the conditions of
|
||||
the problem.
|
||||
@@ -129,9 +129,9 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
:type locations: str, optional
|
||||
|
||||
:Example:
|
||||
>>> pinn.span_pts(n=10, mode='grid')
|
||||
>>> pinn.span_pts(n=10, mode='grid', location=['bound1'])
|
||||
>>> pinn.span_pts(n=10, mode='grid', variables=['x'])
|
||||
>>> pinn.discretise_domain(n=10, mode='grid')
|
||||
>>> pinn.discretise_domain(n=10, mode='grid', location=['bound1'])
|
||||
>>> pinn.discretise_domain(n=10, mode='grid', variables=['x'])
|
||||
|
||||
.. warning::
|
||||
``random`` is currently the only implemented ``mode`` for all geometries, i.e.
|
||||
@@ -200,12 +200,6 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
# the condition is sampled if input_pts contains all labels
|
||||
if sorted(self.input_pts[location].labels) == sorted(self.input_variables):
|
||||
self._have_sampled_points[location] = True
|
||||
# setting device
|
||||
if device:
|
||||
self.input_pts[location] = self.input_pts[location].to(device=device) #TODO better fix
|
||||
# setting the grad
|
||||
self.input_pts[location].requires_grad_(True)
|
||||
self.input_pts[location].retain_grad()
|
||||
|
||||
@property
|
||||
def have_sampled_points(self):
|
||||
|
||||
Reference in New Issue
Block a user