🎨 Format Python code with psf/black (#297)

Co-authored-by: dario-coscia <dario-coscia@users.noreply.github.com>
This commit is contained in:
github-actions[bot]
2024-05-10 14:08:01 +02:00
committed by GitHub
parent e0429bb445
commit 9463ae4b15
11 changed files with 169 additions and 160 deletions

View File

@@ -14,6 +14,7 @@ from pina.problem import InverseProblem
from torch.optim.lr_scheduler import ConstantLR
class Weights(torch.nn.Module):
"""
This class aims to implements the mask model for
@@ -27,11 +28,9 @@ class Weights(torch.nn.Module):
"""
super().__init__()
check_consistency(func, torch.nn.Module)
self.sa_weights = torch.nn.Parameter(
torch.Tensor()
)
self.sa_weights = torch.nn.Parameter(torch.Tensor())
self.func = func
def forward(self):
"""
Forward pass implementation for the mask module.
@@ -43,6 +42,7 @@ class Weights(torch.nn.Module):
"""
return self.func(self.sa_weights)
class SAPINN(PINNInterface):
r"""
Self Adaptive Physics Informed Neural Network (SAPINN) solver class.
@@ -106,22 +106,22 @@ class SAPINN(PINNInterface):
DOI: `10.1016/
j.jcp.2022.111722 <https://doi.org/10.1016/j.jcp.2022.111722>`_.
"""
def __init__(
self,
problem,
model,
weights_function=torch.nn.Sigmoid(),
extra_features=None,
loss=torch.nn.MSELoss(),
optimizer_model=torch.optim.Adam,
optimizer_model_kwargs={"lr" : 0.001},
optimizer_weights=torch.optim.Adam,
optimizer_weights_kwargs={"lr" : 0.001},
scheduler_model=ConstantLR,
scheduler_model_kwargs={"factor" : 1, "total_iters" : 0},
scheduler_weights=ConstantLR,
scheduler_weights_kwargs={"factor" : 1, "total_iters" : 0}
self,
problem,
model,
weights_function=torch.nn.Sigmoid(),
extra_features=None,
loss=torch.nn.MSELoss(),
optimizer_model=torch.optim.Adam,
optimizer_model_kwargs={"lr": 0.001},
optimizer_weights=torch.optim.Adam,
optimizer_weights_kwargs={"lr": 0.001},
scheduler_model=ConstantLR,
scheduler_model_kwargs={"factor": 1, "total_iters": 0},
scheduler_weights=ConstantLR,
scheduler_weights_kwargs={"factor": 1, "total_iters": 0},
):
"""
:param AbstractProblem problem: The formualation of the problem.
@@ -167,19 +167,18 @@ class SAPINN(PINNInterface):
weights_dict[condition_name] = Weights(weights_function)
weights_dict = torch.nn.ModuleDict(weights_dict)
super().__init__(
models=[model, weights_dict],
problem=problem,
optimizers=[optimizer_model, optimizer_weights],
optimizers_kwargs=[
optimizer_model_kwargs,
optimizer_weights_kwargs
optimizer_weights_kwargs,
],
extra_features=extra_features,
loss=loss
loss=loss,
)
# set automatic optimization
self.automatic_optimization = False
@@ -191,12 +190,8 @@ class SAPINN(PINNInterface):
# assign schedulers
self._schedulers = [
scheduler_model(
self.optimizers[0], **scheduler_model_kwargs
),
scheduler_weights(
self.optimizers[1], **scheduler_weights_kwargs
),
scheduler_model(self.optimizers[0], **scheduler_model_kwargs),
scheduler_weights(self.optimizers[1], **scheduler_weights_kwargs),
]
self._model = self.models[0]
@@ -204,7 +199,7 @@ class SAPINN(PINNInterface):
self._vectorial_loss = deepcopy(loss)
self._vectorial_loss.reduction = "none"
def forward(self, x):
"""
Forward pass implementation for the PINN
@@ -219,7 +214,7 @@ class SAPINN(PINNInterface):
:rtype: LabelTensor
"""
return self.neural_net(x)
def loss_phys(self, samples, equation):
"""
Computes the physics loss for the SAPINN solver based on given
@@ -235,7 +230,7 @@ class SAPINN(PINNInterface):
# train weights
self.optimizer_weights.zero_grad()
weighted_loss, _ = self._loss_phys(samples, equation)
loss_value = - weighted_loss.as_subclass(torch.Tensor)
loss_value = -weighted_loss.as_subclass(torch.Tensor)
self.manual_backward(loss_value)
self.optimizer_weights.step()
@@ -271,7 +266,7 @@ class SAPINN(PINNInterface):
# train weights
self.optimizer_weights.zero_grad()
weighted_loss, _ = self._loss_data(input_tensor, output_tensor)
loss_value = - weighted_loss.as_subclass(torch.Tensor)
loss_value = -weighted_loss.as_subclass(torch.Tensor)
self.manual_backward(loss_value)
self.optimizer_weights.step()
@@ -291,7 +286,7 @@ class SAPINN(PINNInterface):
# store loss without weights
self.store_log(loss_value=float(loss))
return loss_value
def configure_optimizers(self):
"""
Optimizer configuration for the SAPINN
@@ -312,8 +307,8 @@ class SAPINN(PINNInterface):
}
)
return self.optimizers, self._schedulers
def on_train_batch_end(self,outputs, batch, batch_idx):
def on_train_batch_end(self, outputs, batch, batch_idx):
"""
This method is called at the end of each training batch, and ovverides
the PytorchLightining implementation for logging the checkpoints.
@@ -327,9 +322,11 @@ class SAPINN(PINNInterface):
:rtype: Any
"""
# increase by one the counter of optimization to save loggers
self.trainer.fit_loop.epoch_loop.manual_optimization.optim_step_progress.total.completed += 1
self.trainer.fit_loop.epoch_loop.manual_optimization.optim_step_progress.total.completed += (
1
)
return super().on_train_batch_end(outputs, batch, batch_idx)
def on_train_start(self):
"""
This method is called at the start of the training for setting
@@ -343,12 +340,11 @@ class SAPINN(PINNInterface):
self.trainer._accelerator_connector._accelerator_flag
)
for condition_name, tensor in self.problem.input_pts.items():
self.weights_dict.torchmodel[condition_name].sa_weights.data = torch.rand(
(tensor.shape[0], 1),
device = device
self.weights_dict.torchmodel[condition_name].sa_weights.data = (
torch.rand((tensor.shape[0], 1), device=device)
)
return super().on_train_start()
def on_load_checkpoint(self, checkpoint):
"""
Overriding the Pytorch Lightning ``on_load_checkpoint`` to handle
@@ -358,8 +354,8 @@ class SAPINN(PINNInterface):
:param dict checkpoint: Pytorch Lightning checkpoint dict.
"""
for condition_name, tensor in self.problem.input_pts.items():
self.weights_dict.torchmodel[condition_name].sa_weights.data = torch.rand(
(tensor.shape[0], 1)
self.weights_dict.torchmodel[condition_name].sa_weights.data = (
torch.rand((tensor.shape[0], 1))
)
return super().on_load_checkpoint(checkpoint)
@@ -370,13 +366,13 @@ class SAPINN(PINNInterface):
:param LabelTensor samples: Input samples to evaluate the physics loss.
:param EquationInterface equation: the governing equation representing
the physics.
:return: tuple with weighted and not weighted scalar loss
:rtype: List[LabelTensor, LabelTensor]
"""
residual = self.compute_residual(samples, equation)
return self._compute_loss(residual)
def _loss_data(self, input_tensor, output_tensor):
"""
Elaboration of the loss related to data for the SAPINN solver.
@@ -384,7 +380,7 @@ class SAPINN(PINNInterface):
:param LabelTensor input_tensor: The input to the neural networks.
:param LabelTensor output_tensor: The true solution to compare the
network solution.
:return: tuple with weighted and not weighted scalar loss
:rtype: List[LabelTensor, LabelTensor]
"""
@@ -396,19 +392,21 @@ class SAPINN(PINNInterface):
Elaboration of the pointwise loss through the mask model and the
self adaptive weights
:param LabelTensor residual: the matrix of residuals that have to
:param LabelTensor residual: the matrix of residuals that have to
be weighted
:return: tuple with weighted and not weighted loss
:rtype List[LabelTensor, LabelTensor]
"""
weights = self.weights_dict.torchmodel[
self.current_condition_name].forward()
loss_value = self._vectorial_loss(torch.zeros_like(
residual, requires_grad=True), residual)
self.current_condition_name
].forward()
loss_value = self._vectorial_loss(
torch.zeros_like(residual, requires_grad=True), residual
)
return (
self._vect_to_scalar(weights * loss_value),
self._vect_to_scalar(loss_value)
self._vect_to_scalar(loss_value),
)
def _vect_to_scalar(self, loss_value):
@@ -426,10 +424,11 @@ class SAPINN(PINNInterface):
elif self.loss.reduction == "sum":
ret = torch.sum(loss_value)
else:
raise RuntimeError(f"Invalid reduction, got {self.loss.reduction} "
"but expected mean or sum.")
raise RuntimeError(
f"Invalid reduction, got {self.loss.reduction} "
"but expected mean or sum."
)
return ret
@property
def neural_net(self):
@@ -440,7 +439,7 @@ class SAPINN(PINNInterface):
:rtype: torch.nn.Module
"""
return self.models[0]
@property
def weights_dict(self):
"""
@@ -462,7 +461,7 @@ class SAPINN(PINNInterface):
:rtype: torch.optim.lr_scheduler._LRScheduler
"""
return self._scheduler[0]
@property
def scheduler_weights(self):
"""
@@ -482,7 +481,7 @@ class SAPINN(PINNInterface):
:rtype: torch.optim.Optimizer
"""
return self.optimizers[0]
@property
def optimizer_weights(self):
"""
@@ -491,4 +490,4 @@ class SAPINN(PINNInterface):
:return: The optimizer for the mask model.
:rtype: torch.optim.Optimizer
"""
return self.optimizers[1]
return self.optimizers[1]