This commit is contained in:
Dario Coscia
2024-03-14 19:16:48 +01:00
committed by Nicola Demo
parent ada9643c11
commit 98f7694d6f
11 changed files with 1171 additions and 78 deletions

View File

@@ -30,6 +30,7 @@ Neural Operator Learning
:titlesonly:
Two dimensional Darcy flow using the Fourier Neural Operator<tutorials/tutorial5/tutorial.rst>
Time dependent Kuramoto Sivashinsky equation using the Averaging Neural Operator<tutorials/tutorial10/tutorial.rst>
Supervised Learning
-------------------

View File

@@ -0,0 +1,347 @@
Tutorial: Averaging Neural Operator for solving Kuramoto Sivashinsky equation
=============================================================================
In this tutorial we will build a Neural Operator using the
``AveragingNeuralOperator`` model and the ``SupervisedSolver``. At the
end of the tutorial you will be able to train a Neural Operator for
learning the operator of time dependent PDEs.
First of all, some useful imports. Note we use ``scipy`` for i/o
operations.
.. code:: ipython3
import torch
import matplotlib.pyplot as plt
from scipy import io
from pina import Condition, LabelTensor
from pina.problem import AbstractProblem
from pina.model import AveragingNeuralOperator
from pina.solvers import SupervisedSolver
from pina.trainer import Trainer
Data Generation
---------------
We will focus on solving a specific PDE, the **Kuramoto Sivashinsky**
(KS) equation. The KS PDE is a fourth-order nonlinear PDE with the
following form:
.. math::
\frac{\partial u}{\partial t}(x,t) = -u(x,t)\frac{\partial u}{\partial x}(x,t)- \frac{\partial^{4}u}{\partial x^{4}}(x,t) - \frac{\partial^{2}u}{\partial x^{2}}(x,t).
In the above :math:`x\in \Omega=[0, 64]` represents a spatial location,
:math:`t\in\mathbb{T}=[0,50]` the time and :math:`u(x, t)` is the value
of the function :math:`u:\Omega \times\mathbb{T}\in\mathbb{R}`. We
indicate with :math:`\mathbb{U}` a suitable space for :math:`u`, i.e. we
have that the solution :math:`u\in\mathbb{U}`.
We impose Dirichlet boundary conditions on the derivative of :math:`u`
on the border of the domain :math:`\partial \Omega`
.. math::
\frac{\partial u}{\partial x}(x,t)=0 \quad \forall (x,t)\in \partial \Omega\times\mathbb{T}.
Initial conditions are sampled from a distribution over truncated
Fourier series with random coefficients
:math:`\{A_k, \ell_k, \phi_k\}_k` as
.. math::
u(x,0) = \sum_{k=1}^N A_k \sin(2 \pi \ell_k x / L + \phi_k) \ ,
where :math:`A_k \in [-0.4, -0.3]`, :math:`\ell_k = 2`,
:math:`\phi_k = 2\pi \quad \forall k=1,\dots,N`.
We have already generated some data for differenti initial conditions,
and our objective will be to build a Neural Operator that, given
:math:`u(x, t)` will output :math:`u(x, t+\delta)`, where :math:`\delta`
is a fixed time step. We will come back on the Neural Operator
architecture, for now we first need to import the data.
**Note:** *The numerical integration is obtained by using pseudospectral
method for spatial derivative discratization and implicit Runge Kutta 5
for temporal dynamics.*
.. code:: ipython3
# load data
data=io.loadmat("dat/Data_KS.mat")
# converting to label tensor
initial_cond_train = LabelTensor(torch.tensor(data['initial_cond_train'], dtype=torch.float), ['t','x','u0'])
initial_cond_test = LabelTensor(torch.tensor(data['initial_cond_test'], dtype=torch.float), ['t','x','u0'])
sol_train = LabelTensor(torch.tensor(data['sol_train'], dtype=torch.float), ['u'])
sol_test = LabelTensor(torch.tensor(data['sol_test'], dtype=torch.float), ['u'])
print('Data Loaded')
print(f' shape initial condition: {initial_cond_train.shape}')
print(f' shape solution: {sol_train.shape}')
.. parsed-literal::
Data Loaded
shape initial condition: torch.Size([100, 12800, 3])
shape solution: torch.Size([100, 12800, 1])
The data are saved in the form ``B \times N \times D``, where ``B`` is
the batch_size (basically how many initial conditions we sample), ``N``
the number of points in the mesh (which is the product of the
discretization in ``x`` timese the one in ``t``), and ``D`` the
dimension of the problem (in this case we have three variables
``[u, t, x]``).
We are now going to plot some trajectories!
.. code:: ipython3
# helper function
def plot_trajectory(coords, real, no_sol=None):
# find the x-t shapes
dim_x = len(torch.unique(coords.extract('x')))
dim_t = len(torch.unique(coords.extract('t')))
# if we don't have the Neural Operator solution we simply plot the real one
if no_sol is None:
fig, axs = plt.subplots(1, 1, figsize=(15, 5), sharex=True, sharey=True)
c = axs.imshow(real.reshape(dim_t, dim_x).T.detach(),extent=[0, 50, 0, 64], cmap='PuOr_r', aspect='auto')
axs.set_title('Real solution')
fig.colorbar(c, ax=axs)
axs.set_xlabel('t')
axs.set_ylabel('x')
# otherwise we plot the real one, the Neural Operator one, and their difference
else:
fig, axs = plt.subplots(1, 3, figsize=(15, 5), sharex=True, sharey=True)
axs[0].imshow(real.reshape(dim_t, dim_x).T.detach(),extent=[0, 50, 0, 64], cmap='PuOr_r', aspect='auto')
axs[0].set_title('Real solution')
axs[1].imshow(no_sol.reshape(dim_t, dim_x).T.detach(),extent=[0, 50, 0, 64], cmap='PuOr_r', aspect='auto')
axs[1].set_title('NO solution')
c = axs[2].imshow((real - no_sol).abs().reshape(dim_t, dim_x).T.detach(),extent=[0, 50, 0, 64], cmap='PuOr_r', aspect='auto')
axs[2].set_title('Absolute difference')
fig.colorbar(c, ax=axs.ravel().tolist())
for ax in axs:
ax.set_xlabel('t')
ax.set_ylabel('x')
plt.show()
# a sample trajectory (we use the sample 5, feel free to change)
sample_number = 20
plot_trajectory(coords=initial_cond_train[sample_number].extract(['x', 't']),
real=sol_train[sample_number].extract('u'))
.. image:: tutorial_files/tutorial_5_0.png
As we can see, as the time progresses the solution becomes chaotic,
which makes it really hard to learn! We will now focus on building a
Neural Operator using the ``SupervisedSolver`` class to tackle the
problem.
Averaging Neural Operator
-------------------------
We will build a neural operator :math:`\texttt{NO}` which takes the
solution at time :math:`t=0` for any :math:`x\in\Omega`, the time
:math:`(t)` at which we want to compute the solution, and gives back the
solution to the KS equation :math:`u(x, t)`, mathematically:
.. math::
\texttt{NO}_\theta : \mathbb{U} \rightarrow \mathbb{U},
such that
.. math::
\texttt{NO}_\theta[u(t=0)](x, t) \rightarrow u(x, t).
There are many ways on approximating the following operator, e.g. by 2D
`FNO <https://mathlab.github.io/PINA/_rst/models/fno.html>`__ (for
regular meshes), a
`DeepOnet <https://mathlab.github.io/PINA/_rst/models/deeponet.html>`__,
`Continuous Convolutional Neural
Operator <https://mathlab.github.io/PINA/_rst/layers/convolution.html>`__,
`MIONet <https://mathlab.github.io/PINA/_rst/models/mionet.html>`__. In
this tutorial we will use the *Averaging Neural Operator* presented in
`The Nonlocal Neural Operator: Universal
Approximation <https://arxiv.org/abs/2304.13221>`__ which is a `Kernel
Neural
Operator <https://mathlab.github.io/PINA/_rst/models/base_no.html>`__
with integral kernel:
.. math::
K(v) = \sigma\left(Wv(x) + b + \frac{1}{|\Omega|}\int_\Omega v(y)dy\right)
where:
- :math:`v(x)\in\mathbb{R}^{\rm{emb}}` is the update for a function
:math:`v` with :math:`\mathbb{R}^{\rm{emb}}` the embedding (hidden)
size
- :math:`\sigma` is a non-linear activation
- :math:`W\in\mathbb{R}^{\rm{emb}\times\rm{emb}}` is a tunable matrix.
- :math:`b\in\mathbb{R}^{\rm{emb}}` is a tunable bias.
If PINA many Kernel Neural Operators are already implemented, and the
modular componets of the `Kernel Neural
Operator <https://mathlab.github.io/PINA/_rst/models/base_no.html>`__
class permits to create new ones by composing base kernel layers.
**Note:**\ \* We will use the already built class\*
``AveragingNeuralOperator``, *as constructive excercise try to use the*
`KernelNeuralOperator <https://mathlab.github.io/PINA/_rst/models/base_no.html>`__
*class for building a kernel neural operator from scratch. You might
employ the different layers that we have in pina, e.g.*
`FeedForward <https://mathlab.github.io/PINA/_rst/models/fnn.html>`__,
*and*
`AveragingNeuralOperator <https://mathlab.github.io/PINA/_rst/layers/avno_layer.html>`__
*layers*.
.. code:: ipython3
class SIREN(torch.nn.Module):
def forward(self, x):
return torch.sin(x)
embedding_dimesion = 40 # hyperparameter embedding dimension
input_dimension = 3 # ['u', 'x', 't']
number_of_coordinates = 2 # ['x', 't']
lifting_net = torch.nn.Linear(input_dimension, embedding_dimesion) # simple linear layers for lifting and projecting nets
projecting_net = torch.nn.Linear(embedding_dimesion + number_of_coordinates, 1)
model = AveragingNeuralOperator(lifting_net=lifting_net,
projecting_net=projecting_net,
coordinates_indices=['x', 't'],
field_indices=['u0'],
n_layers=4,
func=SIREN
)
Super easy! Notice that we use the ``SIREN`` activation function, more
on `Implicit Neural Representations with Periodic Activation
Functions <https://arxiv.org/abs/2006.09661>`__.
Solving the KS problem
----------------------
We will now focus on solving the KS equation using the
``SupervisedSolver`` class and the ``AveragingNeuralOperator`` model. As
done in the `FNO
tutorial <https://github.com/mathLab/PINA/blob/master/tutorials/tutorial5/tutorial.ipynb>`__
we now create the ``NeuralOperatorProblem`` class with
``AbstractProblem``.
.. code:: ipython3
# expected running time ~ 1 minute
class NeuralOperatorProblem(AbstractProblem):
input_variables = initial_cond_train.labels
output_variables = sol_train.labels
conditions = {'data' : Condition(input_points=initial_cond_train,
output_points=sol_train)}
# initialize problem
problem = NeuralOperatorProblem()
# initialize solver
solver = SupervisedSolver(problem=problem, model=model,optimizer_kwargs={"lr":0.001})
# train, only CPU and avoid model summary at beginning of training (optional)
trainer = Trainer(solver=solver, max_epochs=40, accelerator='cpu', enable_model_summary=False, log_every_n_steps=-1, batch_size=5) # we train on CPU and avoid model summary at beginning of training (optional)
trainer.train()
.. parsed-literal::
GPU available: True (mps), used: False
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
.. parsed-literal::
Epoch 39: 100%|██████████| 20/20 [00:01<00:00, 13.59it/s, v_num=3, mean_loss=0.118]
.. parsed-literal::
`Trainer.fit` stopped: `max_epochs=40` reached.
.. parsed-literal::
Epoch 39: 100%|██████████| 20/20 [00:01<00:00, 13.56it/s, v_num=3, mean_loss=0.118]
We can now see some plots for the solutions
.. code:: ipython3
sample_number = 2
no_sol = solver(initial_cond_test)
plot_trajectory(coords=initial_cond_test[sample_number].extract(['x', 't']),
real=sol_test[sample_number].extract('u'),
no_sol=no_sol[5])
.. image:: tutorial_files/tutorial_11_0.png
As we can see we can obtain nice result considering the small trainint
time and the difficulty of the problem! Lets see how the training and
testing error:
.. code:: ipython3
from pina.loss import PowerLoss
error_metric = PowerLoss(p=2) # we use the MSE loss
with torch.no_grad():
no_sol_train = solver(initial_cond_train)
err_train = error_metric(sol_train.extract('u'), no_sol_train).mean() # we average the error over trajectories
no_sol_test = solver(initial_cond_test)
err_test = error_metric(sol_test.extract('u'),no_sol_test).mean() # we average the error over trajectories
print(f'Training error: {float(err_train):.3f}')
print(f'Testing error: {float(err_test):.3f}')
.. parsed-literal::
Training error: 0.128
Testing error: 0.119
as we can see the error is pretty small, which agrees with what we can
see from the previous plots.
Whats next?
------------
Now you know how to solve a time dependent neural operator problem in
**PINA**! There are multiple directions you can go now:
1. Train the network for longer or with different layer sizes and assert
the finaly accuracy
2. We left a more challenging dataset
`Data_KS2.mat <https://github.com/mathLab/PINA/tree/master/tutorials/tutorial10/Data_KS2.mat>`__ where
:math:`A_k \in [-0.5, 0.5]`, :math:`\ell_k \in [1, 2, 3]`,
:math:`\phi_k \in [0, 2\pi]` for loger training
3. Compare the performance between the different neural operators (you
can even try to implement your favourite one!)

Binary file not shown.

After

Width:  |  Height:  |  Size: 270 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB