tut10
This commit is contained in:
committed by
Nicola Demo
parent
ada9643c11
commit
98f7694d6f
@@ -30,6 +30,7 @@ Neural Operator Learning
|
||||
:titlesonly:
|
||||
|
||||
Two dimensional Darcy flow using the Fourier Neural Operator<tutorials/tutorial5/tutorial.rst>
|
||||
Time dependent Kuramoto Sivashinsky equation using the Averaging Neural Operator<tutorials/tutorial10/tutorial.rst>
|
||||
|
||||
Supervised Learning
|
||||
-------------------
|
||||
|
||||
347
docs/source/_rst/tutorials/tutorial10/tutorial.rst
Normal file
347
docs/source/_rst/tutorials/tutorial10/tutorial.rst
Normal file
@@ -0,0 +1,347 @@
|
||||
Tutorial: Averaging Neural Operator for solving Kuramoto Sivashinsky equation
|
||||
=============================================================================
|
||||
|
||||
In this tutorial we will build a Neural Operator using the
|
||||
``AveragingNeuralOperator`` model and the ``SupervisedSolver``. At the
|
||||
end of the tutorial you will be able to train a Neural Operator for
|
||||
learning the operator of time dependent PDEs.
|
||||
|
||||
First of all, some useful imports. Note we use ``scipy`` for i/o
|
||||
operations.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
import torch
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy import io
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.problem import AbstractProblem
|
||||
from pina.model import AveragingNeuralOperator
|
||||
from pina.solvers import SupervisedSolver
|
||||
from pina.trainer import Trainer
|
||||
|
||||
Data Generation
|
||||
---------------
|
||||
|
||||
We will focus on solving a specific PDE, the **Kuramoto Sivashinsky**
|
||||
(KS) equation. The KS PDE is a fourth-order nonlinear PDE with the
|
||||
following form:
|
||||
|
||||
.. math::
|
||||
|
||||
|
||||
\frac{\partial u}{\partial t}(x,t) = -u(x,t)\frac{\partial u}{\partial x}(x,t)- \frac{\partial^{4}u}{\partial x^{4}}(x,t) - \frac{\partial^{2}u}{\partial x^{2}}(x,t).
|
||||
|
||||
In the above :math:`x\in \Omega=[0, 64]` represents a spatial location,
|
||||
:math:`t\in\mathbb{T}=[0,50]` the time and :math:`u(x, t)` is the value
|
||||
of the function :math:`u:\Omega \times\mathbb{T}\in\mathbb{R}`. We
|
||||
indicate with :math:`\mathbb{U}` a suitable space for :math:`u`, i.e. we
|
||||
have that the solution :math:`u\in\mathbb{U}`.
|
||||
|
||||
We impose Dirichlet boundary conditions on the derivative of :math:`u`
|
||||
on the border of the domain :math:`\partial \Omega`
|
||||
|
||||
.. math::
|
||||
|
||||
|
||||
\frac{\partial u}{\partial x}(x,t)=0 \quad \forall (x,t)\in \partial \Omega\times\mathbb{T}.
|
||||
|
||||
|
||||
Initial conditions are sampled from a distribution over truncated
|
||||
Fourier series with random coefficients
|
||||
:math:`\{A_k, \ell_k, \phi_k\}_k` as
|
||||
|
||||
.. math::
|
||||
|
||||
|
||||
u(x,0) = \sum_{k=1}^N A_k \sin(2 \pi \ell_k x / L + \phi_k) \ ,
|
||||
|
||||
where :math:`A_k \in [-0.4, -0.3]`, :math:`\ell_k = 2`,
|
||||
:math:`\phi_k = 2\pi \quad \forall k=1,\dots,N`.
|
||||
|
||||
We have already generated some data for differenti initial conditions,
|
||||
and our objective will be to build a Neural Operator that, given
|
||||
:math:`u(x, t)` will output :math:`u(x, t+\delta)`, where :math:`\delta`
|
||||
is a fixed time step. We will come back on the Neural Operator
|
||||
architecture, for now we first need to import the data.
|
||||
|
||||
**Note:** *The numerical integration is obtained by using pseudospectral
|
||||
method for spatial derivative discratization and implicit Runge Kutta 5
|
||||
for temporal dynamics.*
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
# load data
|
||||
data=io.loadmat("dat/Data_KS.mat")
|
||||
|
||||
# converting to label tensor
|
||||
initial_cond_train = LabelTensor(torch.tensor(data['initial_cond_train'], dtype=torch.float), ['t','x','u0'])
|
||||
initial_cond_test = LabelTensor(torch.tensor(data['initial_cond_test'], dtype=torch.float), ['t','x','u0'])
|
||||
sol_train = LabelTensor(torch.tensor(data['sol_train'], dtype=torch.float), ['u'])
|
||||
sol_test = LabelTensor(torch.tensor(data['sol_test'], dtype=torch.float), ['u'])
|
||||
|
||||
print('Data Loaded')
|
||||
print(f' shape initial condition: {initial_cond_train.shape}')
|
||||
print(f' shape solution: {sol_train.shape}')
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Data Loaded
|
||||
shape initial condition: torch.Size([100, 12800, 3])
|
||||
shape solution: torch.Size([100, 12800, 1])
|
||||
|
||||
|
||||
The data are saved in the form ``B \times N \times D``, where ``B`` is
|
||||
the batch_size (basically how many initial conditions we sample), ``N``
|
||||
the number of points in the mesh (which is the product of the
|
||||
discretization in ``x`` timese the one in ``t``), and ``D`` the
|
||||
dimension of the problem (in this case we have three variables
|
||||
``[u, t, x]``).
|
||||
|
||||
We are now going to plot some trajectories!
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
# helper function
|
||||
def plot_trajectory(coords, real, no_sol=None):
|
||||
# find the x-t shapes
|
||||
dim_x = len(torch.unique(coords.extract('x')))
|
||||
dim_t = len(torch.unique(coords.extract('t')))
|
||||
# if we don't have the Neural Operator solution we simply plot the real one
|
||||
if no_sol is None:
|
||||
fig, axs = plt.subplots(1, 1, figsize=(15, 5), sharex=True, sharey=True)
|
||||
c = axs.imshow(real.reshape(dim_t, dim_x).T.detach(),extent=[0, 50, 0, 64], cmap='PuOr_r', aspect='auto')
|
||||
axs.set_title('Real solution')
|
||||
fig.colorbar(c, ax=axs)
|
||||
axs.set_xlabel('t')
|
||||
axs.set_ylabel('x')
|
||||
# otherwise we plot the real one, the Neural Operator one, and their difference
|
||||
else:
|
||||
fig, axs = plt.subplots(1, 3, figsize=(15, 5), sharex=True, sharey=True)
|
||||
axs[0].imshow(real.reshape(dim_t, dim_x).T.detach(),extent=[0, 50, 0, 64], cmap='PuOr_r', aspect='auto')
|
||||
axs[0].set_title('Real solution')
|
||||
axs[1].imshow(no_sol.reshape(dim_t, dim_x).T.detach(),extent=[0, 50, 0, 64], cmap='PuOr_r', aspect='auto')
|
||||
axs[1].set_title('NO solution')
|
||||
c = axs[2].imshow((real - no_sol).abs().reshape(dim_t, dim_x).T.detach(),extent=[0, 50, 0, 64], cmap='PuOr_r', aspect='auto')
|
||||
axs[2].set_title('Absolute difference')
|
||||
fig.colorbar(c, ax=axs.ravel().tolist())
|
||||
for ax in axs:
|
||||
ax.set_xlabel('t')
|
||||
ax.set_ylabel('x')
|
||||
plt.show()
|
||||
|
||||
# a sample trajectory (we use the sample 5, feel free to change)
|
||||
sample_number = 20
|
||||
plot_trajectory(coords=initial_cond_train[sample_number].extract(['x', 't']),
|
||||
real=sol_train[sample_number].extract('u'))
|
||||
|
||||
|
||||
|
||||
|
||||
.. image:: tutorial_files/tutorial_5_0.png
|
||||
|
||||
|
||||
As we can see, as the time progresses the solution becomes chaotic,
|
||||
which makes it really hard to learn! We will now focus on building a
|
||||
Neural Operator using the ``SupervisedSolver`` class to tackle the
|
||||
problem.
|
||||
|
||||
Averaging Neural Operator
|
||||
-------------------------
|
||||
|
||||
We will build a neural operator :math:`\texttt{NO}` which takes the
|
||||
solution at time :math:`t=0` for any :math:`x\in\Omega`, the time
|
||||
:math:`(t)` at which we want to compute the solution, and gives back the
|
||||
solution to the KS equation :math:`u(x, t)`, mathematically:
|
||||
|
||||
.. math::
|
||||
|
||||
|
||||
\texttt{NO}_\theta : \mathbb{U} \rightarrow \mathbb{U},
|
||||
|
||||
such that
|
||||
|
||||
.. math::
|
||||
|
||||
|
||||
\texttt{NO}_\theta[u(t=0)](x, t) \rightarrow u(x, t).
|
||||
|
||||
There are many ways on approximating the following operator, e.g. by 2D
|
||||
`FNO <https://mathlab.github.io/PINA/_rst/models/fno.html>`__ (for
|
||||
regular meshes), a
|
||||
`DeepOnet <https://mathlab.github.io/PINA/_rst/models/deeponet.html>`__,
|
||||
`Continuous Convolutional Neural
|
||||
Operator <https://mathlab.github.io/PINA/_rst/layers/convolution.html>`__,
|
||||
`MIONet <https://mathlab.github.io/PINA/_rst/models/mionet.html>`__. In
|
||||
this tutorial we will use the *Averaging Neural Operator* presented in
|
||||
`The Nonlocal Neural Operator: Universal
|
||||
Approximation <https://arxiv.org/abs/2304.13221>`__ which is a `Kernel
|
||||
Neural
|
||||
Operator <https://mathlab.github.io/PINA/_rst/models/base_no.html>`__
|
||||
with integral kernel:
|
||||
|
||||
.. math::
|
||||
|
||||
|
||||
K(v) = \sigma\left(Wv(x) + b + \frac{1}{|\Omega|}\int_\Omega v(y)dy\right)
|
||||
|
||||
where:
|
||||
|
||||
- :math:`v(x)\in\mathbb{R}^{\rm{emb}}` is the update for a function
|
||||
:math:`v` with :math:`\mathbb{R}^{\rm{emb}}` the embedding (hidden)
|
||||
size
|
||||
- :math:`\sigma` is a non-linear activation
|
||||
- :math:`W\in\mathbb{R}^{\rm{emb}\times\rm{emb}}` is a tunable matrix.
|
||||
- :math:`b\in\mathbb{R}^{\rm{emb}}` is a tunable bias.
|
||||
|
||||
If PINA many Kernel Neural Operators are already implemented, and the
|
||||
modular componets of the `Kernel Neural
|
||||
Operator <https://mathlab.github.io/PINA/_rst/models/base_no.html>`__
|
||||
class permits to create new ones by composing base kernel layers.
|
||||
|
||||
**Note:**\ \* We will use the already built class\*
|
||||
``AveragingNeuralOperator``, *as constructive excercise try to use the*
|
||||
`KernelNeuralOperator <https://mathlab.github.io/PINA/_rst/models/base_no.html>`__
|
||||
*class for building a kernel neural operator from scratch. You might
|
||||
employ the different layers that we have in pina, e.g.*
|
||||
`FeedForward <https://mathlab.github.io/PINA/_rst/models/fnn.html>`__,
|
||||
*and*
|
||||
`AveragingNeuralOperator <https://mathlab.github.io/PINA/_rst/layers/avno_layer.html>`__
|
||||
*layers*.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
class SIREN(torch.nn.Module):
|
||||
def forward(self, x):
|
||||
return torch.sin(x)
|
||||
|
||||
embedding_dimesion = 40 # hyperparameter embedding dimension
|
||||
input_dimension = 3 # ['u', 'x', 't']
|
||||
number_of_coordinates = 2 # ['x', 't']
|
||||
lifting_net = torch.nn.Linear(input_dimension, embedding_dimesion) # simple linear layers for lifting and projecting nets
|
||||
projecting_net = torch.nn.Linear(embedding_dimesion + number_of_coordinates, 1)
|
||||
model = AveragingNeuralOperator(lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
coordinates_indices=['x', 't'],
|
||||
field_indices=['u0'],
|
||||
n_layers=4,
|
||||
func=SIREN
|
||||
)
|
||||
|
||||
Super easy! Notice that we use the ``SIREN`` activation function, more
|
||||
on `Implicit Neural Representations with Periodic Activation
|
||||
Functions <https://arxiv.org/abs/2006.09661>`__.
|
||||
|
||||
Solving the KS problem
|
||||
----------------------
|
||||
|
||||
We will now focus on solving the KS equation using the
|
||||
``SupervisedSolver`` class and the ``AveragingNeuralOperator`` model. As
|
||||
done in the `FNO
|
||||
tutorial <https://github.com/mathLab/PINA/blob/master/tutorials/tutorial5/tutorial.ipynb>`__
|
||||
we now create the ``NeuralOperatorProblem`` class with
|
||||
``AbstractProblem``.
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
# expected running time ~ 1 minute
|
||||
|
||||
class NeuralOperatorProblem(AbstractProblem):
|
||||
input_variables = initial_cond_train.labels
|
||||
output_variables = sol_train.labels
|
||||
conditions = {'data' : Condition(input_points=initial_cond_train,
|
||||
output_points=sol_train)}
|
||||
|
||||
|
||||
# initialize problem
|
||||
problem = NeuralOperatorProblem()
|
||||
# initialize solver
|
||||
solver = SupervisedSolver(problem=problem, model=model,optimizer_kwargs={"lr":0.001})
|
||||
# train, only CPU and avoid model summary at beginning of training (optional)
|
||||
trainer = Trainer(solver=solver, max_epochs=40, accelerator='cpu', enable_model_summary=False, log_every_n_steps=-1, batch_size=5) # we train on CPU and avoid model summary at beginning of training (optional)
|
||||
trainer.train()
|
||||
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
GPU available: True (mps), used: False
|
||||
TPU available: False, using: 0 TPU cores
|
||||
IPU available: False, using: 0 IPUs
|
||||
HPU available: False, using: 0 HPUs
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 39: 100%|██████████| 20/20 [00:01<00:00, 13.59it/s, v_num=3, mean_loss=0.118]
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
`Trainer.fit` stopped: `max_epochs=40` reached.
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Epoch 39: 100%|██████████| 20/20 [00:01<00:00, 13.56it/s, v_num=3, mean_loss=0.118]
|
||||
|
||||
|
||||
We can now see some plots for the solutions
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
sample_number = 2
|
||||
no_sol = solver(initial_cond_test)
|
||||
plot_trajectory(coords=initial_cond_test[sample_number].extract(['x', 't']),
|
||||
real=sol_test[sample_number].extract('u'),
|
||||
no_sol=no_sol[5])
|
||||
|
||||
|
||||
|
||||
.. image:: tutorial_files/tutorial_11_0.png
|
||||
|
||||
|
||||
As we can see we can obtain nice result considering the small trainint
|
||||
time and the difficulty of the problem! Let’s see how the training and
|
||||
testing error:
|
||||
|
||||
.. code:: ipython3
|
||||
|
||||
from pina.loss import PowerLoss
|
||||
|
||||
error_metric = PowerLoss(p=2) # we use the MSE loss
|
||||
|
||||
with torch.no_grad():
|
||||
no_sol_train = solver(initial_cond_train)
|
||||
err_train = error_metric(sol_train.extract('u'), no_sol_train).mean() # we average the error over trajectories
|
||||
no_sol_test = solver(initial_cond_test)
|
||||
err_test = error_metric(sol_test.extract('u'),no_sol_test).mean() # we average the error over trajectories
|
||||
print(f'Training error: {float(err_train):.3f}')
|
||||
print(f'Testing error: {float(err_test):.3f}')
|
||||
|
||||
|
||||
.. parsed-literal::
|
||||
|
||||
Training error: 0.128
|
||||
Testing error: 0.119
|
||||
|
||||
|
||||
as we can see the error is pretty small, which agrees with what we can
|
||||
see from the previous plots.
|
||||
|
||||
What’s next?
|
||||
------------
|
||||
|
||||
Now you know how to solve a time dependent neural operator problem in
|
||||
**PINA**! There are multiple directions you can go now:
|
||||
|
||||
1. Train the network for longer or with different layer sizes and assert
|
||||
the finaly accuracy
|
||||
|
||||
2. We left a more challenging dataset
|
||||
`Data_KS2.mat <https://github.com/mathLab/PINA/tree/master/tutorials/tutorial10/Data_KS2.mat>`__ where
|
||||
:math:`A_k \in [-0.5, 0.5]`, :math:`\ell_k \in [1, 2, 3]`,
|
||||
:math:`\phi_k \in [0, 2\pi]` for loger training
|
||||
|
||||
3. Compare the performance between the different neural operators (you
|
||||
can even try to implement your favourite one!)
|
||||
Binary file not shown.
|
After Width: | Height: | Size: 270 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 43 KiB |
Reference in New Issue
Block a user