tut10
This commit is contained in:
committed by
Nicola Demo
parent
ada9643c11
commit
98f7694d6f
@@ -1,62 +1,146 @@
|
||||
import torch
|
||||
from pina.model import AveragingNeuralOperator
|
||||
from pina import LabelTensor
|
||||
import pytest
|
||||
|
||||
|
||||
output_numb_fields = 5
|
||||
batch_size = 15
|
||||
n_layers = 4
|
||||
embedding_dim = 24
|
||||
func = torch.nn.Tanh
|
||||
coordinates_indices = ['p']
|
||||
field_indices = ['v']
|
||||
|
||||
|
||||
def test_constructor():
|
||||
input_numb_fields = 1
|
||||
output_numb_fields = 1
|
||||
#minimuum constructor
|
||||
AveragingNeuralOperator(input_numb_fields,
|
||||
output_numb_fields,
|
||||
coordinates_indices=['p'],
|
||||
field_indices=['v'])
|
||||
# working constructor
|
||||
lifting_net = torch.nn.Linear(len(coordinates_indices) + len(field_indices),
|
||||
embedding_dim)
|
||||
projecting_net = torch.nn.Linear(embedding_dim + len(field_indices),
|
||||
len(field_indices))
|
||||
AveragingNeuralOperator(
|
||||
lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
coordinates_indices=coordinates_indices,
|
||||
field_indices=field_indices,
|
||||
n_layers=n_layers,
|
||||
func=func)
|
||||
|
||||
#all constructor
|
||||
AveragingNeuralOperator(input_numb_fields,
|
||||
output_numb_fields,
|
||||
inner_size=5,
|
||||
n_layers=5,
|
||||
func=torch.nn.ReLU,
|
||||
coordinates_indices=['p'],
|
||||
field_indices=['v'])
|
||||
# not working constructor
|
||||
with pytest.raises(ValueError):
|
||||
AveragingNeuralOperator(
|
||||
lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
coordinates_indices=coordinates_indices,
|
||||
field_indices=field_indices,
|
||||
n_layers=3.2, # wrong
|
||||
func=func)
|
||||
|
||||
AveragingNeuralOperator(
|
||||
lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
coordinates_indices=coordinates_indices,
|
||||
field_indices=field_indices,
|
||||
n_layers=n_layers,
|
||||
func=1) # wrong
|
||||
|
||||
AveragingNeuralOperator(
|
||||
lifting_net=[0], # wrong
|
||||
projecting_net=projecting_net,
|
||||
coordinates_indices=coordinates_indices,
|
||||
field_indices=field_indices,
|
||||
n_layers=n_layers,
|
||||
func=func)
|
||||
|
||||
AveragingNeuralOperator(
|
||||
lifting_net=lifting_net,
|
||||
projecting_net=[0], # wront
|
||||
coordinates_indices=coordinates_indices,
|
||||
field_indices=field_indices,
|
||||
n_layers=n_layers,
|
||||
func=func)
|
||||
|
||||
AveragingNeuralOperator(
|
||||
lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
coordinates_indices=[0], #wrong
|
||||
field_indices=field_indices,
|
||||
n_layers=n_layers,
|
||||
func=func)
|
||||
|
||||
AveragingNeuralOperator(
|
||||
lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
coordinates_indices=coordinates_indices,
|
||||
field_indices=[0], #wrong
|
||||
n_layers=n_layers,
|
||||
func=func)
|
||||
|
||||
lifting_net = torch.nn.Linear(len(coordinates_indices),
|
||||
embedding_dim)
|
||||
AveragingNeuralOperator(
|
||||
lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
coordinates_indices=coordinates_indices,
|
||||
field_indices=field_indices,
|
||||
n_layers=n_layers,
|
||||
func=func)
|
||||
|
||||
lifting_net = torch.nn.Linear(len(coordinates_indices) + len(field_indices),
|
||||
embedding_dim)
|
||||
projecting_net = torch.nn.Linear(embedding_dim,
|
||||
len(field_indices))
|
||||
AveragingNeuralOperator(
|
||||
lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
coordinates_indices=coordinates_indices,
|
||||
field_indices=field_indices,
|
||||
n_layers=n_layers,
|
||||
func=func)
|
||||
|
||||
|
||||
def test_forward():
|
||||
input_numb_fields = 1
|
||||
output_numb_fields = 1
|
||||
dimension = 1
|
||||
lifting_net = torch.nn.Linear(len(coordinates_indices) + len(field_indices),
|
||||
embedding_dim)
|
||||
projecting_net = torch.nn.Linear(embedding_dim + len(field_indices),
|
||||
len(field_indices))
|
||||
avno=AveragingNeuralOperator(
|
||||
lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
coordinates_indices=coordinates_indices,
|
||||
field_indices=field_indices,
|
||||
n_layers=n_layers,
|
||||
func=func)
|
||||
|
||||
input_ = LabelTensor(
|
||||
torch.rand(batch_size, 1000, input_numb_fields + dimension), ['p', 'v'])
|
||||
ano = AveragingNeuralOperator(input_numb_fields,
|
||||
output_numb_fields,
|
||||
dimension=dimension,
|
||||
coordinates_indices=['p'],
|
||||
field_indices=['v'])
|
||||
out = ano(input_)
|
||||
torch.rand(batch_size, 100,
|
||||
len(coordinates_indices) + len(field_indices)), ['p', 'v'])
|
||||
|
||||
out = avno(input_)
|
||||
assert out.shape == torch.Size(
|
||||
[batch_size, input_.shape[1], output_numb_fields])
|
||||
[batch_size, input_.shape[1], len(field_indices)])
|
||||
|
||||
|
||||
def test_backward():
|
||||
input_numb_fields = 1
|
||||
dimension = 1
|
||||
output_numb_fields = 1
|
||||
lifting_net = torch.nn.Linear(len(coordinates_indices) + len(field_indices),
|
||||
embedding_dim)
|
||||
projecting_net = torch.nn.Linear(embedding_dim + len(field_indices),
|
||||
len(field_indices))
|
||||
avno=AveragingNeuralOperator(
|
||||
lifting_net=lifting_net,
|
||||
projecting_net=projecting_net,
|
||||
coordinates_indices=coordinates_indices,
|
||||
field_indices=field_indices,
|
||||
n_layers=n_layers,
|
||||
func=func)
|
||||
input_ = LabelTensor(
|
||||
torch.rand(batch_size, 1000, dimension + input_numb_fields),
|
||||
['p', 'v'])
|
||||
torch.rand(batch_size, 100,
|
||||
len(coordinates_indices) + len(field_indices)), ['p', 'v'])
|
||||
input_ = input_.requires_grad_()
|
||||
avno = AveragingNeuralOperator(input_numb_fields,
|
||||
output_numb_fields,
|
||||
dimension=dimension,
|
||||
coordinates_indices=['p'],
|
||||
field_indices=['v'])
|
||||
out = avno(input_)
|
||||
tmp = torch.linalg.norm(out)
|
||||
tmp.backward()
|
||||
grad = input_.grad
|
||||
assert grad.shape == torch.Size(
|
||||
[batch_size, input_.shape[1], dimension + input_numb_fields])
|
||||
[batch_size, input_.shape[1],
|
||||
len(coordinates_indices) + len(field_indices)])
|
||||
Reference in New Issue
Block a user