refact dataset, dataloader and datamodule
This commit is contained in:
@@ -11,203 +11,8 @@ from torch_geometric.data import Data
|
||||
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from ..label_tensor import LabelTensor
|
||||
from .dataset import PinaDatasetFactory, PinaTensorDataset
|
||||
|
||||
|
||||
class DummyDataloader:
|
||||
|
||||
def __init__(self, dataset):
|
||||
"""
|
||||
Prepare a dataloader object that returns the entire dataset in a single
|
||||
batch. Depending on the number of GPUs, the dataset is managed
|
||||
as follows:
|
||||
|
||||
- **Distributed Environment** (multiple GPUs): Divides dataset across
|
||||
processes using the rank and world size. Fetches only portion of
|
||||
data corresponding to the current process.
|
||||
- **Non-Distributed Environment** (single GPU): Fetches the entire
|
||||
dataset.
|
||||
|
||||
:param PinaDataset dataset: The dataset object to be processed.
|
||||
|
||||
.. note::
|
||||
This dataloader is used when the batch size is ``None``.
|
||||
"""
|
||||
|
||||
if (
|
||||
torch.distributed.is_available()
|
||||
and torch.distributed.is_initialized()
|
||||
):
|
||||
rank = torch.distributed.get_rank()
|
||||
world_size = torch.distributed.get_world_size()
|
||||
if len(dataset) < world_size:
|
||||
raise RuntimeError(
|
||||
"Dimension of the dataset smaller than world size."
|
||||
" Increase the size of the partition or use a single GPU"
|
||||
)
|
||||
idx, i = [], rank
|
||||
while i < len(dataset):
|
||||
idx.append(i)
|
||||
i += world_size
|
||||
self.dataset = dataset.fetch_from_idx_list(idx)
|
||||
else:
|
||||
self.dataset = dataset.get_all_data()
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __len__(self):
|
||||
return 1
|
||||
|
||||
def __next__(self):
|
||||
return self.dataset
|
||||
|
||||
|
||||
class Collator:
|
||||
"""
|
||||
This callable class is used to collate the data points fetched from the
|
||||
dataset. The collation is performed based on the type of dataset used and
|
||||
on the batching strategy.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self, max_conditions_lengths, automatic_batching, dataset=None
|
||||
):
|
||||
"""
|
||||
Initialize the object, setting the collate function based on whether
|
||||
automatic batching is enabled or not.
|
||||
|
||||
:param dict max_conditions_lengths: ``dict`` containing the maximum
|
||||
number of data points to consider in a single batch for
|
||||
each condition.
|
||||
:param bool automatic_batching: Whether automatic PyTorch batching is
|
||||
enabled or not. For more information, see the
|
||||
:class:`~pina.data.data_module.PinaDataModule` class.
|
||||
:param PinaDataset dataset: The dataset where the data is stored.
|
||||
"""
|
||||
|
||||
self.max_conditions_lengths = max_conditions_lengths
|
||||
# Set the collate function based on the batching strategy
|
||||
# collate_pina_dataloader is used when automatic batching is disabled
|
||||
# collate_torch_dataloader is used when automatic batching is enabled
|
||||
self.callable_function = (
|
||||
self._collate_torch_dataloader
|
||||
if automatic_batching
|
||||
else (self._collate_pina_dataloader)
|
||||
)
|
||||
self.dataset = dataset
|
||||
|
||||
# Set the function which performs the actual collation
|
||||
if isinstance(self.dataset, PinaTensorDataset):
|
||||
# If the dataset is a PinaTensorDataset, use this collate function
|
||||
self._collate = self._collate_tensor_dataset
|
||||
else:
|
||||
# If the dataset is a PinaDataset, use this collate function
|
||||
self._collate = self._collate_graph_dataset
|
||||
|
||||
def _collate_pina_dataloader(self, batch):
|
||||
"""
|
||||
Function used to create a batch when automatic batching is disabled.
|
||||
|
||||
:param list[int] batch: List of integers representing the indices of
|
||||
the data points to be fetched.
|
||||
:return: Dictionary containing the data points fetched from the dataset.
|
||||
:rtype: dict
|
||||
"""
|
||||
# Call the fetch_from_idx_list method of the dataset
|
||||
return self.dataset.fetch_from_idx_list(batch)
|
||||
|
||||
def _collate_torch_dataloader(self, batch):
|
||||
"""
|
||||
Function used to collate the batch
|
||||
|
||||
:param list[dict] batch: List of retrieved data.
|
||||
:return: Dictionary containing the data points fetched from the dataset,
|
||||
collated.
|
||||
:rtype: dict
|
||||
"""
|
||||
|
||||
batch_dict = {}
|
||||
if isinstance(batch, dict):
|
||||
return batch
|
||||
conditions_names = batch[0].keys()
|
||||
# Condition names
|
||||
for condition_name in conditions_names:
|
||||
single_cond_dict = {}
|
||||
condition_args = batch[0][condition_name].keys()
|
||||
for arg in condition_args:
|
||||
data_list = [
|
||||
batch[idx][condition_name][arg]
|
||||
for idx in range(
|
||||
min(
|
||||
len(batch),
|
||||
self.max_conditions_lengths[condition_name],
|
||||
)
|
||||
)
|
||||
]
|
||||
single_cond_dict[arg] = self._collate(data_list)
|
||||
|
||||
batch_dict[condition_name] = single_cond_dict
|
||||
return batch_dict
|
||||
|
||||
@staticmethod
|
||||
def _collate_tensor_dataset(data_list):
|
||||
"""
|
||||
Function used to collate the data when the dataset is a
|
||||
:class:`~pina.data.dataset.PinaTensorDataset`.
|
||||
|
||||
:param data_list: Elements to be collated.
|
||||
:type data_list: list[torch.Tensor] | list[LabelTensor]
|
||||
:return: Batch of data.
|
||||
:rtype: dict
|
||||
|
||||
:raises RuntimeError: If the data is not a :class:`torch.Tensor` or a
|
||||
:class:`~pina.label_tensor.LabelTensor`.
|
||||
"""
|
||||
|
||||
if isinstance(data_list[0], LabelTensor):
|
||||
return LabelTensor.stack(data_list)
|
||||
if isinstance(data_list[0], torch.Tensor):
|
||||
return torch.stack(data_list)
|
||||
raise RuntimeError("Data must be Tensors or LabelTensor ")
|
||||
|
||||
def _collate_graph_dataset(self, data_list):
|
||||
"""
|
||||
Function used to collate data when the dataset is a
|
||||
:class:`~pina.data.dataset.PinaGraphDataset`.
|
||||
|
||||
:param data_list: Elememts to be collated.
|
||||
:type data_list: list[Data] | list[Graph]
|
||||
:return: Batch of data.
|
||||
:rtype: dict
|
||||
|
||||
:raises RuntimeError: If the data is not a
|
||||
:class:`~torch_geometric.data.Data` or a :class:`~pina.graph.Graph`.
|
||||
"""
|
||||
if isinstance(data_list[0], LabelTensor):
|
||||
return LabelTensor.cat(data_list)
|
||||
if isinstance(data_list[0], torch.Tensor):
|
||||
return torch.cat(data_list)
|
||||
if isinstance(data_list[0], Data):
|
||||
return self.dataset.create_batch(data_list)
|
||||
raise RuntimeError(
|
||||
"Data must be Tensors or LabelTensor or pyG "
|
||||
"torch_geometric.data.Data"
|
||||
)
|
||||
|
||||
def __call__(self, batch):
|
||||
"""
|
||||
Perform the collation of data fetched from the dataset. The behavoior
|
||||
of the function is set based on the batching strategy during class
|
||||
initialization.
|
||||
|
||||
:param batch: List of retrieved data or sampled indices.
|
||||
:type batch: list[int] | list[dict]
|
||||
:return: Dictionary containing colleted data fetched from the dataset.
|
||||
:rtype: dict
|
||||
"""
|
||||
|
||||
return self.callable_function(batch)
|
||||
from .dataset import PinaDatasetFactory
|
||||
from .dataloader import PinaDataLoader
|
||||
|
||||
|
||||
class PinaSampler:
|
||||
@@ -235,6 +40,19 @@ class PinaSampler:
|
||||
return sampler
|
||||
|
||||
|
||||
def DataloaderCollector():
|
||||
|
||||
def __init__(self, dataloader_list):
|
||||
"""
|
||||
Initialize the object.
|
||||
"""
|
||||
assert isinstance(dataloader_list, list)
|
||||
assert all(
|
||||
isinstance(dataloader, DataLoader) for dataloader in dataloader_list
|
||||
)
|
||||
self.dataloader_list = dataloader_list
|
||||
|
||||
|
||||
class PinaDataModule(LightningDataModule):
|
||||
"""
|
||||
This class extends :class:`~lightning.pytorch.core.LightningDataModule`,
|
||||
@@ -376,23 +194,23 @@ class PinaDataModule(LightningDataModule):
|
||||
if stage == "fit" or stage is None:
|
||||
self.train_dataset = PinaDatasetFactory(
|
||||
self.data_splits["train"],
|
||||
max_conditions_lengths=self.find_max_conditions_lengths(
|
||||
"train"
|
||||
),
|
||||
# max_conditions_lengths=self.find_max_conditions_lengths(
|
||||
# "train"
|
||||
# ),
|
||||
automatic_batching=self.automatic_batching,
|
||||
)
|
||||
if "val" in self.data_splits.keys():
|
||||
self.val_dataset = PinaDatasetFactory(
|
||||
self.data_splits["val"],
|
||||
max_conditions_lengths=self.find_max_conditions_lengths(
|
||||
"val"
|
||||
),
|
||||
# max_conditions_lengths=self.find_max_conditions_lengths(
|
||||
# "val"
|
||||
# ),
|
||||
automatic_batching=self.automatic_batching,
|
||||
)
|
||||
elif stage == "test":
|
||||
self.test_dataset = PinaDatasetFactory(
|
||||
self.data_splits["test"],
|
||||
max_conditions_lengths=self.find_max_conditions_lengths("test"),
|
||||
# max_conditions_lengths=self.find_max_conditions_lengths("test"),
|
||||
automatic_batching=self.automatic_batching,
|
||||
)
|
||||
else:
|
||||
@@ -502,32 +320,14 @@ class PinaDataModule(LightningDataModule):
|
||||
),
|
||||
module="lightning.pytorch.trainer.connectors.data_connector",
|
||||
)
|
||||
# Use custom batching (good if batch size is large)
|
||||
if self.batch_size is not None:
|
||||
sampler = PinaSampler(dataset)
|
||||
if self.automatic_batching:
|
||||
collate = Collator(
|
||||
self.find_max_conditions_lengths(split),
|
||||
self.automatic_batching,
|
||||
dataset=dataset,
|
||||
)
|
||||
else:
|
||||
collate = Collator(
|
||||
None, self.automatic_batching, dataset=dataset
|
||||
)
|
||||
return DataLoader(
|
||||
dataset,
|
||||
self.batch_size,
|
||||
collate_fn=collate,
|
||||
sampler=sampler,
|
||||
num_workers=self.num_workers,
|
||||
)
|
||||
dataloader = DummyDataloader(dataset)
|
||||
dataloader.dataset = self._transfer_batch_to_device(
|
||||
dataloader.dataset, self.trainer.strategy.root_device, 0
|
||||
return PinaDataLoader(
|
||||
dataset,
|
||||
batch_size=self.batch_size,
|
||||
shuffle=self.shuffle,
|
||||
num_workers=self.num_workers,
|
||||
collate_fn=None,
|
||||
common_batch_size=True,
|
||||
)
|
||||
self.transfer_batch_to_device = self._transfer_batch_to_device_dummy
|
||||
return dataloader
|
||||
|
||||
def find_max_conditions_lengths(self, split):
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user