beginning of domain doc

This commit is contained in:
giovanni
2025-03-12 11:07:30 +01:00
committed by FilippoOlivo
parent c6c2361899
commit 9bf85da740

View File

@@ -8,14 +8,19 @@ from ..utils import torch_lhs, chebyshev_roots
class CartesianDomain(DomainInterface):
"""PINA implementation of Hypercube domain."""
"""
Implementation of the hypercube domain.
"""
def __init__(self, cartesian_dict):
"""
:param cartesian_dict: A dictionary with dict-key a string representing
the input variables for the pinn, and dict-value a list with
the domain extrema.
:type cartesian_dict: dict
Initialize the :class:`~pina.domain.CartesianDomain` class.
:param dict cartesian_dict: A dictionary where the keys are the
variable names and the values are the domain extrema. The domain
extrema can be either a list with two elements or a single number.
If the domain extrema is a single number, the variable is fixed to
that value.
:Example:
>>> spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
@@ -33,22 +38,31 @@ class CartesianDomain(DomainInterface):
@property
def sample_modes(self):
"""
List of available sampling modes.
:return: List of available sampling modes.
:rtype: list[str]
"""
return ["random", "grid", "lh", "chebyshev", "latin"]
@property
def variables(self):
"""Spatial variables.
"""
List of variables of the domain.
:return: Spatial variables defined in ``__init__()``
:return: List of variables of the domain.
:rtype: list[str]
"""
return sorted(list(self.fixed_.keys()) + list(self.range_.keys()))
def update(self, new_domain):
"""Adding new dimensions on the ``CartesianDomain``
"""
Add new dimensions to an existing :class:`~pina.domain.CartesianDomain`
object.
:param CartesianDomain new_domain: A new ``CartesianDomain`` object
to merge
:param :class:`~pina.domain.CartesianDomain` new_domain: New domain to
be added to an existing :class:`~pina.domain.CartesianDomain` object.
:Example:
>>> spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
@@ -63,24 +77,20 @@ class CartesianDomain(DomainInterface):
self.range_.update(new_domain.range_)
def _sample_range(self, n, mode, bounds):
"""Rescale the samples to the correct bounds
"""
Rescale the samples to fit within the specified bounds.
:param n: Number of points to sample, see Note below
for reference.
:type n: int
:param mode: Mode for sampling, defaults to ``random``.
Available modes include: random sampling, ``random``;
latin hypercube sampling, ``latin`` or ``lh``;
chebyshev sampling, ``chebyshev``; grid sampling ``grid``.
:type mode: str
:param bounds: Bounds to rescale the samples.
:type bounds: torch.Tensor
:param int n: Number of points to sample.
:param str mode: Sampling method. Default is ``random``.
:param torch.Tensor bounds: Bounds of the domain.
:raises RuntimeError: Wrong bounds initialization.
:raises ValueError: Invalid sampling mode.
:return: Rescaled sample points.
:rtype: torch.Tensor
"""
dim = bounds.shape[0]
if mode in ["chebyshev", "grid"] and dim != 1:
raise RuntimeError("Something wrong in Cartesian...")
raise RuntimeError("Wrong bounds initialization")
if mode == "random":
pts = torch.rand(size=(n, dim))
@@ -88,7 +98,6 @@ class CartesianDomain(DomainInterface):
pts = chebyshev_roots(n).mul(0.5).add(0.5).reshape(-1, 1)
elif mode == "grid":
pts = torch.linspace(0, 1, n).reshape(-1, 1)
# elif mode == 'lh' or mode == 'latin':
elif mode in ["lh", "latin"]:
pts = torch_lhs(n, dim)
else:
@@ -97,36 +106,35 @@ class CartesianDomain(DomainInterface):
return pts * (bounds[:, 1] - bounds[:, 0]) + bounds[:, 0]
def sample(self, n, mode="random", variables="all"):
"""Sample routine.
"""
Sampling routine.
:param n: Number of points to sample, see Note below
for reference.
:type n: int
:param mode: Mode for sampling, defaults to ``random``.
Available modes include: random sampling, ``random``;
latin hypercube sampling, ``latin`` or ``lh``;
:param int n: Number of points to sample, see Note below for reference.
:param str mode: Sampling method. Default is ``random``.
Available modes: random sampling, ``random``;
latin hypercube sampling, ``latin`` or ``lh``;
chebyshev sampling, ``chebyshev``; grid sampling ``grid``.
:type mode: str
:param variables: pinn variable to be sampled, defaults to ``all``.
:param variables: variables to be sampled. Default is ``all``.
:type variables: str | list[str]
:return: Returns ``LabelTensor`` of n sampled points.
:return: Sampled points.
:rtype: LabelTensor
.. note::
The total number of points sampled in case of multiple variables
is not ``n``, and it depends on the chosen ``mode``. If ``mode`` is
'grid' or ``chebyshev``, the points are sampled independentely
across the variables and the results crossed together, i.e. the
final number of points is ``n`` to the power of the number of
variables. If 'mode' is 'random', ``lh`` or ``latin``, the variables
are sampled all together, and the final number of points
When multiple variables are involved, the total number of sampled
points may differ from ``n``, depending on the chosen ``mode``.
If ``mode`` is ``grid`` or ``chebyshev``, points are sampled
independently for each variable and then combined, resulting in a
total number of points equal to ``n`` raised to the power of the
number of variables. If 'mode' is 'random', ``lh`` or ``latin``,
all variables are sampled together, and the total number of points
remains ``n``.
.. warning::
The extrema values of Span are always sampled only for ``grid``
mode.
The extrema of CartesianDomain are only sampled when using the
``grid`` mode.
:Example:
>>> spatial_domain = Span({'x': [0, 1], 'y': [0, 1]})
>>> spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
>>> spatial_domain.sample(n=4, mode='random')
tensor([[0.0108, 0.7643],
[0.4477, 0.8015],
@@ -152,7 +160,16 @@ class CartesianDomain(DomainInterface):
"""
def _1d_sampler(n, mode, variables):
"""Sample independentely the variables and cross the results"""
"""
Sample each variable independently.
:param int n: Number of points to sample.
:param str mode: Sampling method.
:param variables: variables to be sampled.
:type variables: str | list[str]
:return: Sampled points.
:rtype: list[LabelTensor]
"""
tmp = []
for variable in variables:
if variable in self.range_:
@@ -181,19 +198,15 @@ class CartesianDomain(DomainInterface):
return result
def _Nd_sampler(n, mode, variables):
"""Sample all the variables together
"""
Sample all variables together.
:param n: Number of points to sample.
:type n: int
:param mode: Mode for sampling, defaults to ``random``.
Available modes include: random sampling, ``random``;
latin hypercube sampling, ``latin`` or ``lh``;
chebyshev sampling, ``chebyshev``; grid sampling ``grid``.
:type mode: str.
:param variables: pinn variable to be sampled, defaults to ``all``.
:type variables: str or list[str].
:return: Sample points.
:rtype: list[torch.Tensor]
:param int n: Number of points to sample.
:param str mode: Sampling method.
:param variables: variables to be sampled.
:type variables: str | list[str]
:return: Sampled points.
:rtype: list[LabelTensor]
"""
pairs = [(k, v) for k, v in self.range_.items() if k in variables]
keys, values = map(list, zip(*pairs))
@@ -215,13 +228,13 @@ class CartesianDomain(DomainInterface):
return result
def _single_points_sample(n, variables):
"""Sample a single point in one dimension.
"""
Sample a single point in one dimension.
:param n: Number of points to sample.
:type n: int
:param variables: Variables to sample from.
:type variables: list[str]
:return: Sample points.
:param int n: Number of points to sample.
:param variables: variables to be sampled.
:type variables: str | list[str]
:return: Sampled points.
:rtype: list[torch.Tensor]
"""
tmp = []
@@ -256,14 +269,13 @@ class CartesianDomain(DomainInterface):
raise ValueError(f"mode={mode} is not valid.")
def is_inside(self, point, check_border=False):
"""Check if a point is inside the ellipsoid.
"""
Check if a point is inside the hypercube.
:param point: Point to be checked
:type point: LabelTensor
:param check_border: Check if the point is also on the frontier
of the hypercube, default ``False``.
:type check_border: bool
:return: Returning ``True`` if the point is inside, ``False`` otherwise.
:param LabelTensor point: Point to be checked.
:param bool check_border: Determines whether to check if the point lies
on the boundary of the hypercube. Default is ``False``.
:return: ``True`` if the point is inside the domain, ``False`` otherwise.
:rtype: bool
"""
is_inside = []