Co-authored-by: Federico Pichi <fpichi@sissa.it>
This commit is contained in:
Dario Coscia
2025-09-15 19:31:38 +02:00
committed by GitHub
parent c709f386b4
commit 9c60f616b7
5 changed files with 553 additions and 0 deletions

View File

@@ -39,5 +39,6 @@ Supervised Learning
- `Introductory Tutorial: Supervised Learning with PINA <tutorial20/tutorial.html>`_ - `Introductory Tutorial: Supervised Learning with PINA <tutorial20/tutorial.html>`_
- `Chemical Properties Prediction with Graph Neural Networks <tutorial15/tutorial.html>`_ - `Chemical Properties Prediction with Graph Neural Networks <tutorial15/tutorial.html>`_
- `Reduced Order Model with Graph Neural Networks for Unstructured Domains <tutorial22/tutorial.html>`_
- `Unstructured Convolutional Autoencoders with Continuous Convolution <tutorial4/tutorial.html>`_ - `Unstructured Convolutional Autoencoders with Continuous Convolution <tutorial4/tutorial.html>`_
- `Reduced Order Modeling with POD-RBF and POD-NN Approaches for Fluid Dynamics <tutorial8/tutorial.html>`_ - `Reduced Order Modeling with POD-RBF and POD-NN Approaches for Fluid Dynamics <tutorial8/tutorial.html>`_

1
tutorials/README.md vendored
View File

@@ -42,6 +42,7 @@ Solving the KuramotoSivashinsky Equation with Averaging Neural Operator |[[.i
|---------------|-----------| |---------------|-----------|
Introductory Tutorial: Supervised Learning with PINA |[[.ipynb](tutorial20/tutorial.ipynb),[.py](tutorial20/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial20/tutorial.html)]| Introductory Tutorial: Supervised Learning with PINA |[[.ipynb](tutorial20/tutorial.ipynb),[.py](tutorial20/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial20/tutorial.html)]|
Chemical Properties Prediction with Graph Neural Networks |[[.ipynb](tutorial15/tutorial.ipynb),[.py](tutorial15/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial15/tutorial.html)]| Chemical Properties Prediction with Graph Neural Networks |[[.ipynb](tutorial15/tutorial.ipynb),[.py](tutorial15/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial15/tutorial.html)]|
Reduced Order Model with Graph Neural Networks for Unstructured Domains| [[.ipynb](tutorial22/tutorial.ipynb),[.py](tutorial22/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial22/tutorial.html)]|
Unstructured Convolutional Autoencoders with Continuous Convolution |[[.ipynb](tutorial4/tutorial.ipynb),[.py](tutorial4/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial4/tutorial.html)]| Unstructured Convolutional Autoencoders with Continuous Convolution |[[.ipynb](tutorial4/tutorial.ipynb),[.py](tutorial4/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial4/tutorial.html)]|
Reduced Order Modeling with POD-RBF and POD-NN Approaches for Fluid Dynamics| [[.ipynb](tutorial8/tutorial.ipynb),[.py](tutorial8/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial8/tutorial.html)]| Reduced Order Modeling with POD-RBF and POD-NN Approaches for Fluid Dynamics| [[.ipynb](tutorial8/tutorial.ipynb),[.py](tutorial8/tutorial.py),[.html](http://mathlab.github.io/PINA/tutorial8/tutorial.html)]|

BIN
tutorials/static/gca_off_on_3_pina.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 923 KiB

BIN
tutorials/tutorial22/holed_poisson.pt vendored Normal file

Binary file not shown.

551
tutorials/tutorial22/tutorial.ipynb vendored Normal file

File diff suppressed because one or more lines are too long