Fix bug in Collector with Graph data (#456)

* Fix bug in Collector with Graph data
* Add comments in DataModule class and bug fix in collate
This commit is contained in:
Filippo Olivo
2025-02-20 13:49:01 +01:00
committed by Nicola Demo
parent dfd6d7b467
commit 9c9d4fe7e4
6 changed files with 254 additions and 66 deletions

View File

@@ -2,11 +2,11 @@ import logging
import warnings
from lightning.pytorch import LightningDataModule
import torch
from ..label_tensor import LabelTensor
from torch.utils.data import DataLoader, BatchSampler, SequentialSampler, \
RandomSampler
from torch_geometric.data import Data
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from .dataset import PinaDatasetFactory
from ..label_tensor import LabelTensor
from .dataset import PinaDatasetFactory, PinaTensorDataset
from ..collector import Collector
@@ -61,6 +61,10 @@ class Collator:
max_conditions_lengths is None else (
self._collate_standard_dataloader)
self.dataset = dataset
if isinstance(self.dataset, PinaTensorDataset):
self._collate = self._collate_tensor_dataset
else:
self._collate = self._collate_graph_dataset
def _collate_custom_dataloader(self, batch):
return self.dataset.fetch_from_idx_list(batch)
@@ -73,7 +77,6 @@ class Collator:
if isinstance(batch, dict):
return batch
conditions_names = batch[0].keys()
# Condition names
for condition_name in conditions_names:
single_cond_dict = {}
@@ -82,16 +85,28 @@ class Collator:
data_list = [batch[idx][condition_name][arg] for idx in range(
min(len(batch),
self.max_conditions_lengths[condition_name]))]
if isinstance(data_list[0], LabelTensor):
single_cond_dict[arg] = LabelTensor.stack(data_list)
elif isinstance(data_list[0], torch.Tensor):
single_cond_dict[arg] = torch.stack(data_list)
else:
raise NotImplementedError(
f"Data type {type(data_list[0])} not supported")
single_cond_dict[arg] = self._collate(data_list)
batch_dict[condition_name] = single_cond_dict
return batch_dict
@staticmethod
def _collate_tensor_dataset(data_list):
if isinstance(data_list[0], LabelTensor):
return LabelTensor.stack(data_list)
if isinstance(data_list[0], torch.Tensor):
return torch.stack(data_list)
raise RuntimeError("Data must be Tensors or LabelTensor ")
def _collate_graph_dataset(self, data_list):
if isinstance(data_list[0], LabelTensor):
return LabelTensor.cat(data_list)
if isinstance(data_list[0], torch.Tensor):
return torch.cat(data_list)
if isinstance(data_list[0], Data):
return self.dataset.create_graph_batch(data_list)
raise RuntimeError("Data must be Tensors or LabelTensor or pyG Data")
def __call__(self, batch):
return self.callable_function(batch)
@@ -125,7 +140,7 @@ class PinaDataModule(LightningDataModule):
batch_size=None,
shuffle=True,
repeat=False,
automatic_batching=False,
automatic_batching=None,
num_workers=0,
pin_memory=False,
):
@@ -158,15 +173,35 @@ class PinaDataModule(LightningDataModule):
logging.debug('Start initialization of Pina DataModule')
logging.info('Start initialization of Pina DataModule')
super().__init__()
self.automatic_batching = automatic_batching
# Store fixed attributes
self.batch_size = batch_size
self.shuffle = shuffle
self.repeat = repeat
self.automatic_batching = automatic_batching
if batch_size is None and num_workers != 0:
warnings.warn(
"Setting num_workers when batch_size is None has no effect on "
"the DataLoading process.")
self.num_workers = 0
else:
self.num_workers = num_workers
if batch_size is None and pin_memory:
warnings.warn("Setting pin_memory to True has no effect when "
"batch_size is None.")
self.pin_memory = False
else:
self.pin_memory = pin_memory
# Collect data
collector = Collector(problem)
collector.store_fixed_data()
collector.store_sample_domains()
# Check if the splits are correct
self._check_slit_sizes(train_size, test_size, val_size, predict_size)
# Begin Data splitting
# Split input data into subsets
splits_dict = {}
if train_size > 0:
splits_dict['train'] = train_size
@@ -188,19 +223,6 @@ class PinaDataModule(LightningDataModule):
self.predict_dataset = None
else:
self.predict_dataloader = super().predict_dataloader
collector = Collector(problem)
collector.store_fixed_data()
collector.store_sample_domains()
if batch_size is None and num_workers != 0:
warnings.warn(
"Setting num_workers when batch_size is None has no effect on "
"the DataLoading process.")
if batch_size is None and pin_memory:
warnings.warn("Setting pin_memory to True has no effect when "
"batch_size is None.")
self.num_workers = num_workers
self.pin_memory = pin_memory
self.collector_splits = self._create_splits(collector, splits_dict)
self.transfer_batch_to_device = self._transfer_batch_to_device
@@ -316,10 +338,10 @@ class PinaDataModule(LightningDataModule):
if self.batch_size is not None:
sampler = PinaSampler(dataset, shuffle)
if self.automatic_batching:
collate = Collator(self.find_max_conditions_lengths(split))
collate = Collator(self.find_max_conditions_lengths(split),
dataset=dataset)
else:
collate = Collator(None, dataset)
collate = Collator(None, dataset=dataset)
return DataLoader(dataset, self.batch_size,
collate_fn=collate, sampler=sampler,
num_workers=self.num_workers)

View File

@@ -1,10 +1,12 @@
"""
This module provide basic data management functionalities
"""
import functools
import torch
from torch.utils.data import Dataset
from abc import abstractmethod
from torch_geometric.data import Batch
from torch_geometric.data import Batch, Data
from pina import LabelTensor
class PinaDatasetFactory:
@@ -62,7 +64,7 @@ class PinaTensorDataset(PinaDataset):
if automatic_batching:
self._getitem_func = self._getitem_int
else:
self._getitem_func = self._getitem_list
self._getitem_func = self._getitem_dummy
def _getitem_int(self, idx):
return {
@@ -82,7 +84,7 @@ class PinaTensorDataset(PinaDataset):
return to_return_dict
@staticmethod
def _getitem_list(idx):
def _getitem_dummy(idx):
return idx
def get_all_data(self):
@@ -102,15 +104,56 @@ class PinaTensorDataset(PinaDataset):
}
class PinaBatch(Batch):
"""
Add extract function to torch_geometric Batch object
"""
def __init__(self):
super().__init__(self)
def extract(self, labels):
"""
Perform extraction of labels on node features (x)
:param labels: Labels to extract
:type labels: list[str] | tuple[str] | str
:return: Batch object with extraction performed on x
:rtype: PinaBatch
"""
self.x = self.x.extract(labels)
return self
class PinaGraphDataset(PinaDataset):
def __init__(self, conditions_dict, max_conditions_lengths,
automatic_batching):
super().__init__(conditions_dict, max_conditions_lengths)
self.in_labels = {}
self.out_labels = None
if automatic_batching:
self._getitem_func = self._getitem_int
else:
self._getitem_func = self._getitem_list
self._getitem_func = self._getitem_dummy
ex_data = conditions_dict[list(conditions_dict.keys())[
0]]['input_points'][0]
for name, attr in ex_data.items():
if isinstance(attr, LabelTensor):
self.in_labels[name] = attr.stored_labels
ex_data = conditions_dict[list(conditions_dict.keys())[
0]]['output_points'][0]
if isinstance(ex_data, LabelTensor):
self.out_labels = ex_data.labels
self._create_graph_batch_from_list = self._labelise_batch(
self._base_create_graph_batch_from_list) if self.in_labels \
else self._base_create_graph_batch_from_list
self._create_output_batch = self._labelise_tensor(
self._base_create_output_batch) if self.out_labels is not None \
else self._base_create_output_batch
def fetch_from_idx_list(self, idx):
to_return_dict = {}
@@ -119,17 +162,24 @@ class PinaGraphDataset(PinaDataset):
condition_len = self.conditions_length[condition]
if self.length > condition_len:
cond_idx = [idx % condition_len for idx in cond_idx]
to_return_dict[condition] = {k: Batch.from_data_list([
v[i] for i in cond_idx])
if isinstance(v, list)
else v[
cond_idx].reshape(
-1, *v[cond_idx].shape[2:])
for k, v in data.items()
}
to_return_dict[condition] = {
k: self._create_graph_batch_from_list([v[i] for i in idx])
if isinstance(v, list)
else self._create_output_batch(v[idx])
for k, v in data.items()
}
return to_return_dict
def _getitem_list(self, idx):
def _base_create_graph_batch_from_list(self, data):
batch = PinaBatch.from_data_list(data)
return batch
def _base_create_output_batch(self, data):
out = data.reshape(-1, *data.shape[2:])
return out
def _getitem_dummy(self, idx):
return idx
def _getitem_int(self, idx):
@@ -144,3 +194,31 @@ class PinaGraphDataset(PinaDataset):
def __getitem__(self, idx):
return self._getitem_func(idx)
def _labelise_batch(self, func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
batch = func(*args, **kwargs)
for k, v in self.in_labels.items():
tmp = batch[k]
tmp.labels = v
batch[k] = tmp
return batch
return wrapper
def _labelise_tensor(self, func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
out = func(*args, **kwargs)
if isinstance(out, LabelTensor):
out.labels = self.out_labels
return out
return wrapper
def create_graph_batch(self, data):
"""
# TODO
"""
if isinstance(data[0], Data):
return self._create_graph_batch_from_list(data)
return self._create_output_batch(data)