Fix bug in Collector with Graph data (#456)
* Fix bug in Collector with Graph data * Add comments in DataModule class and bug fix in collate
This commit is contained in:
committed by
Nicola Demo
parent
dfd6d7b467
commit
9c9d4fe7e4
@@ -2,11 +2,11 @@ import logging
|
||||
import warnings
|
||||
from lightning.pytorch import LightningDataModule
|
||||
import torch
|
||||
from ..label_tensor import LabelTensor
|
||||
from torch.utils.data import DataLoader, BatchSampler, SequentialSampler, \
|
||||
RandomSampler
|
||||
from torch_geometric.data import Data
|
||||
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
from .dataset import PinaDatasetFactory
|
||||
from ..label_tensor import LabelTensor
|
||||
from .dataset import PinaDatasetFactory, PinaTensorDataset
|
||||
from ..collector import Collector
|
||||
|
||||
|
||||
@@ -61,6 +61,10 @@ class Collator:
|
||||
max_conditions_lengths is None else (
|
||||
self._collate_standard_dataloader)
|
||||
self.dataset = dataset
|
||||
if isinstance(self.dataset, PinaTensorDataset):
|
||||
self._collate = self._collate_tensor_dataset
|
||||
else:
|
||||
self._collate = self._collate_graph_dataset
|
||||
|
||||
def _collate_custom_dataloader(self, batch):
|
||||
return self.dataset.fetch_from_idx_list(batch)
|
||||
@@ -73,7 +77,6 @@ class Collator:
|
||||
if isinstance(batch, dict):
|
||||
return batch
|
||||
conditions_names = batch[0].keys()
|
||||
|
||||
# Condition names
|
||||
for condition_name in conditions_names:
|
||||
single_cond_dict = {}
|
||||
@@ -82,16 +85,28 @@ class Collator:
|
||||
data_list = [batch[idx][condition_name][arg] for idx in range(
|
||||
min(len(batch),
|
||||
self.max_conditions_lengths[condition_name]))]
|
||||
if isinstance(data_list[0], LabelTensor):
|
||||
single_cond_dict[arg] = LabelTensor.stack(data_list)
|
||||
elif isinstance(data_list[0], torch.Tensor):
|
||||
single_cond_dict[arg] = torch.stack(data_list)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Data type {type(data_list[0])} not supported")
|
||||
single_cond_dict[arg] = self._collate(data_list)
|
||||
|
||||
batch_dict[condition_name] = single_cond_dict
|
||||
return batch_dict
|
||||
|
||||
@staticmethod
|
||||
def _collate_tensor_dataset(data_list):
|
||||
if isinstance(data_list[0], LabelTensor):
|
||||
return LabelTensor.stack(data_list)
|
||||
if isinstance(data_list[0], torch.Tensor):
|
||||
return torch.stack(data_list)
|
||||
raise RuntimeError("Data must be Tensors or LabelTensor ")
|
||||
|
||||
def _collate_graph_dataset(self, data_list):
|
||||
if isinstance(data_list[0], LabelTensor):
|
||||
return LabelTensor.cat(data_list)
|
||||
if isinstance(data_list[0], torch.Tensor):
|
||||
return torch.cat(data_list)
|
||||
if isinstance(data_list[0], Data):
|
||||
return self.dataset.create_graph_batch(data_list)
|
||||
raise RuntimeError("Data must be Tensors or LabelTensor or pyG Data")
|
||||
|
||||
def __call__(self, batch):
|
||||
return self.callable_function(batch)
|
||||
|
||||
@@ -125,7 +140,7 @@ class PinaDataModule(LightningDataModule):
|
||||
batch_size=None,
|
||||
shuffle=True,
|
||||
repeat=False,
|
||||
automatic_batching=False,
|
||||
automatic_batching=None,
|
||||
num_workers=0,
|
||||
pin_memory=False,
|
||||
):
|
||||
@@ -158,15 +173,35 @@ class PinaDataModule(LightningDataModule):
|
||||
logging.debug('Start initialization of Pina DataModule')
|
||||
logging.info('Start initialization of Pina DataModule')
|
||||
super().__init__()
|
||||
self.automatic_batching = automatic_batching
|
||||
|
||||
# Store fixed attributes
|
||||
self.batch_size = batch_size
|
||||
self.shuffle = shuffle
|
||||
self.repeat = repeat
|
||||
self.automatic_batching = automatic_batching
|
||||
if batch_size is None and num_workers != 0:
|
||||
warnings.warn(
|
||||
"Setting num_workers when batch_size is None has no effect on "
|
||||
"the DataLoading process.")
|
||||
self.num_workers = 0
|
||||
else:
|
||||
self.num_workers = num_workers
|
||||
if batch_size is None and pin_memory:
|
||||
warnings.warn("Setting pin_memory to True has no effect when "
|
||||
"batch_size is None.")
|
||||
self.pin_memory = False
|
||||
else:
|
||||
self.pin_memory = pin_memory
|
||||
|
||||
# Collect data
|
||||
collector = Collector(problem)
|
||||
collector.store_fixed_data()
|
||||
collector.store_sample_domains()
|
||||
|
||||
# Check if the splits are correct
|
||||
self._check_slit_sizes(train_size, test_size, val_size, predict_size)
|
||||
|
||||
# Begin Data splitting
|
||||
# Split input data into subsets
|
||||
splits_dict = {}
|
||||
if train_size > 0:
|
||||
splits_dict['train'] = train_size
|
||||
@@ -188,19 +223,6 @@ class PinaDataModule(LightningDataModule):
|
||||
self.predict_dataset = None
|
||||
else:
|
||||
self.predict_dataloader = super().predict_dataloader
|
||||
|
||||
collector = Collector(problem)
|
||||
collector.store_fixed_data()
|
||||
collector.store_sample_domains()
|
||||
if batch_size is None and num_workers != 0:
|
||||
warnings.warn(
|
||||
"Setting num_workers when batch_size is None has no effect on "
|
||||
"the DataLoading process.")
|
||||
if batch_size is None and pin_memory:
|
||||
warnings.warn("Setting pin_memory to True has no effect when "
|
||||
"batch_size is None.")
|
||||
self.num_workers = num_workers
|
||||
self.pin_memory = pin_memory
|
||||
self.collector_splits = self._create_splits(collector, splits_dict)
|
||||
self.transfer_batch_to_device = self._transfer_batch_to_device
|
||||
|
||||
@@ -316,10 +338,10 @@ class PinaDataModule(LightningDataModule):
|
||||
if self.batch_size is not None:
|
||||
sampler = PinaSampler(dataset, shuffle)
|
||||
if self.automatic_batching:
|
||||
collate = Collator(self.find_max_conditions_lengths(split))
|
||||
|
||||
collate = Collator(self.find_max_conditions_lengths(split),
|
||||
dataset=dataset)
|
||||
else:
|
||||
collate = Collator(None, dataset)
|
||||
collate = Collator(None, dataset=dataset)
|
||||
return DataLoader(dataset, self.batch_size,
|
||||
collate_fn=collate, sampler=sampler,
|
||||
num_workers=self.num_workers)
|
||||
|
||||
Reference in New Issue
Block a user