Fix bug in Collector with Graph data (#456)

* Fix bug in Collector with Graph data
* Add comments in DataModule class and bug fix in collate
This commit is contained in:
Filippo Olivo
2025-02-20 13:49:01 +01:00
committed by Nicola Demo
parent dfd6d7b467
commit 9c9d4fe7e4
6 changed files with 254 additions and 66 deletions

View File

@@ -13,10 +13,10 @@ from torch.utils.data import DataLoader
input_tensor = torch.rand((100, 10))
output_tensor = torch.rand((100, 2))
x = torch.rand((100, 50 , 10))
pos = torch.rand((100, 50 , 2))
x = torch.rand((100, 50, 10))
pos = torch.rand((100, 50, 2))
input_graph = RadiusGraph(x, pos, r=.1, build_edge_attr=True)
output_graph = torch.rand((100, 50 , 10))
output_graph = torch.rand((100, 50, 10))
@pytest.mark.parametrize(
@@ -30,6 +30,7 @@ def test_constructor(input_, output_):
problem = SupervisedProblem(input_=input_, output_=output_)
PinaDataModule(problem)
@pytest.mark.parametrize(
"input_, output_",
[
@@ -46,14 +47,15 @@ def test_constructor(input_, output_):
)
def test_setup_train(input_, output_, train_size, val_size, test_size):
problem = SupervisedProblem(input_=input_, output_=output_)
dm = PinaDataModule(problem, train_size=train_size, val_size=val_size, test_size=test_size)
dm = PinaDataModule(problem, train_size=train_size,
val_size=val_size, test_size=test_size)
dm.setup()
assert hasattr(dm, "train_dataset")
if isinstance(input_, torch.Tensor):
assert isinstance(dm.train_dataset, PinaTensorDataset)
else:
assert isinstance(dm.train_dataset, PinaGraphDataset)
#assert len(dm.train_dataset) == int(len(input_) * train_size)
# assert len(dm.train_dataset) == int(len(input_) * train_size)
if test_size > 0:
assert hasattr(dm, "test_dataset")
assert dm.test_dataset is None
@@ -64,7 +66,8 @@ def test_setup_train(input_, output_, train_size, val_size, test_size):
assert isinstance(dm.val_dataset, PinaTensorDataset)
else:
assert isinstance(dm.val_dataset, PinaGraphDataset)
#assert len(dm.val_dataset) == int(len(input_) * val_size)
# assert len(dm.val_dataset) == int(len(input_) * val_size)
@pytest.mark.parametrize(
"input_, output_",
@@ -82,7 +85,8 @@ def test_setup_train(input_, output_, train_size, val_size, test_size):
)
def test_setup_test(input_, output_, train_size, val_size, test_size):
problem = SupervisedProblem(input_=input_, output_=output_)
dm = PinaDataModule(problem, train_size=train_size, val_size=val_size, test_size=test_size)
dm = PinaDataModule(problem, train_size=train_size,
val_size=val_size, test_size=test_size)
dm.setup(stage='test')
if train_size > 0:
assert hasattr(dm, "train_dataset")
@@ -94,13 +98,14 @@ def test_setup_test(input_, output_, train_size, val_size, test_size):
assert dm.val_dataset is None
else:
assert not hasattr(dm, "val_dataset")
assert hasattr(dm, "test_dataset")
if isinstance(input_, torch.Tensor):
assert isinstance(dm.test_dataset, PinaTensorDataset)
else:
assert isinstance(dm.test_dataset, PinaGraphDataset)
#assert len(dm.test_dataset) == int(len(input_) * test_size)
# assert len(dm.test_dataset) == int(len(input_) * test_size)
@pytest.mark.parametrize(
"input_, output_",
@@ -112,7 +117,8 @@ def test_setup_test(input_, output_, train_size, val_size, test_size):
def test_dummy_dataloader(input_, output_):
problem = SupervisedProblem(input_=input_, output_=output_)
solver = SupervisedSolver(problem=problem, model=torch.nn.Linear(10, 10))
trainer = Trainer(solver, batch_size=None, train_size=.7, val_size=.3, test_size=0.)
trainer = Trainer(solver, batch_size=None, train_size=.7,
val_size=.3, test_size=0.)
dm = trainer.data_module
dm.setup()
dm.trainer = trainer
@@ -140,6 +146,7 @@ def test_dummy_dataloader(input_, output_):
assert isinstance(data[0][1]['input_points'], torch.Tensor)
assert isinstance(data[0][1]['output_points'], torch.Tensor)
@pytest.mark.parametrize(
"input_, output_",
[
@@ -147,10 +154,17 @@ def test_dummy_dataloader(input_, output_):
(input_graph, output_graph)
]
)
def test_dataloader(input_, output_):
@pytest.mark.parametrize(
"automatic_batching",
[
True, False
]
)
def test_dataloader(input_, output_, automatic_batching):
problem = SupervisedProblem(input_=input_, output_=output_)
solver = SupervisedSolver(problem=problem, model=torch.nn.Linear(10, 10))
trainer = Trainer(solver, batch_size=10, train_size=.7, val_size=.3, test_size=0.)
trainer = Trainer(solver, batch_size=10, train_size=.7, val_size=.3,
test_size=0., automatic_batching=automatic_batching)
dm = trainer.data_module
dm.setup()
dm.trainer = trainer
@@ -176,3 +190,67 @@ def test_dataloader(input_, output_):
assert isinstance(data['data']['input_points'], torch.Tensor)
assert isinstance(data['data']['output_points'], torch.Tensor)
from pina import LabelTensor
input_tensor = LabelTensor(torch.rand((100, 3)), ['u', 'v', 'w'])
output_tensor = LabelTensor(torch.rand((100, 3)), ['u', 'v', 'w'])
x = LabelTensor(torch.rand((100, 50, 3)), ['u', 'v', 'w'])
pos = LabelTensor(torch.rand((100, 50, 2)), ['x', 'y'])
input_graph = RadiusGraph(x, pos, r=.1, build_edge_attr=True)
output_graph = LabelTensor(torch.rand((100, 50, 3)), ['u', 'v', 'w'])
@pytest.mark.parametrize(
"input_, output_",
[
(input_tensor, output_tensor),
(input_graph, output_graph)
]
)
@pytest.mark.parametrize(
"automatic_batching",
[
True, False
]
)
def test_dataloader_labels(input_, output_, automatic_batching):
problem = SupervisedProblem(input_=input_, output_=output_)
solver = SupervisedSolver(problem=problem, model=torch.nn.Linear(10, 10))
trainer = Trainer(solver, batch_size=10, train_size=.7, val_size=.3,
test_size=0., automatic_batching=automatic_batching)
dm = trainer.data_module
dm.setup()
dm.trainer = trainer
dataloader = dm.train_dataloader()
assert isinstance(dataloader, DataLoader)
assert len(dataloader) == 7
data = next(iter(dataloader))
assert isinstance(data, dict)
if isinstance(input_, RadiusGraph):
assert isinstance(data['data']['input_points'], Batch)
assert isinstance(data['data']['input_points'].x, LabelTensor)
assert data['data']['input_points'].x.labels == ['u', 'v', 'w']
assert data['data']['input_points'].pos.labels == ['x', 'y']
else:
assert isinstance(data['data']['input_points'], LabelTensor)
assert data['data']['input_points'].labels == ['u', 'v', 'w']
assert isinstance(data['data']['output_points'], LabelTensor)
assert data['data']['output_points'].labels == ['u', 'v', 'w']
dataloader = dm.val_dataloader()
assert isinstance(dataloader, DataLoader)
assert len(dataloader) == 3
data = next(iter(dataloader))
assert isinstance(data, dict)
if isinstance(input_, RadiusGraph):
assert isinstance(data['data']['input_points'], Batch)
assert isinstance(data['data']['input_points'].x, LabelTensor)
assert data['data']['input_points'].x.labels == ['u', 'v', 'w']
assert data['data']['input_points'].pos.labels == ['x', 'y']
else:
assert isinstance(data['data']['input_points'], torch.Tensor)
assert isinstance(data['data']['input_points'], LabelTensor)
assert data['data']['input_points'].labels == ['u', 'v', 'w']
assert isinstance(data['data']['output_points'], torch.Tensor)
assert data['data']['output_points'].labels == ['u', 'v', 'w']
test_dataloader_labels(input_graph, output_graph, True)