Update solvers (#434)

* Enable DDP training with batch_size=None and add validity check for split sizes
* Refactoring SolverInterfaces (#435)
* Solver update + weighting
* Updating PINN for 0.2
* Modify GAROM + tests
* Adding more versatile loggers
* Disable compilation when running on Windows
* Fix tests

---------

Co-authored-by: giovanni <giovanni.canali98@yahoo.it>
Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
This commit is contained in:
Dario Coscia
2025-02-17 11:26:21 +01:00
committed by Nicola Demo
parent 780c4921eb
commit 9cae9a438f
50 changed files with 2848 additions and 4187 deletions

View File

@@ -1,6 +1,5 @@
import logging
from lightning.pytorch import LightningDataModule
import math
import torch
from ..label_tensor import LabelTensor
from torch.utils.data import DataLoader, BatchSampler, SequentialSampler, \
@@ -10,8 +9,38 @@ from .dataset import PinaDatasetFactory
from ..collector import Collector
class DummyDataloader:
def __init__(self, dataset, device):
self.dataset = dataset.get_all_data()
""""
Dummy dataloader used when batch size is None. It callects all the data
in self.dataset and returns it when it is called a single batch.
"""
def __init__(self, dataset):
"""
param dataset: The dataset object to be processed.
:notes:
- **Distributed Environment**:
- Divides the dataset across processes using the
rank and world size.
- Fetches only the portion of data corresponding to
the current process.
- **Non-Distributed Environment**:
- Fetches the entire dataset.
"""
if (torch.distributed.is_available() and
torch.distributed.is_initialized()):
rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size()
if len(dataset) < world_size:
raise RuntimeError(
"Dimension of the dataset smaller than world size."
" Increase the size of the partition or use a single GPU")
idx, i = [], rank
while i < len(dataset):
idx.append(i)
i += world_size
self.dataset = dataset.fetch_from_idx_list(idx)
else:
self.dataset = dataset.get_all_data()
def __iter__(self):
return self
@@ -50,7 +79,7 @@ class Collator:
for arg in condition_args:
data_list = [batch[idx][condition_name][arg] for idx in range(
min(len(batch),
self.max_conditions_lengths[condition_name]))]
self.max_conditions_lengths[condition_name]))]
if isinstance(data_list[0], LabelTensor):
single_cond_dict[arg] = LabelTensor.stack(data_list)
elif isinstance(data_list[0], torch.Tensor):
@@ -61,7 +90,6 @@ class Collator:
batch_dict[condition_name] = single_cond_dict
return batch_dict
def __call__(self, batch):
return self.callable_function(batch)
@@ -99,6 +127,7 @@ class PinaDataModule(LightningDataModule):
):
"""
Initialize the object, creating dataset based on input problem
:param problem: Problem where data are defined
:param train_size: number/percentage of elements in train split
:param test_size: number/percentage of elements in test split
:param val_size: number/percentage of elements in evaluation split
@@ -112,6 +141,9 @@ class PinaDataModule(LightningDataModule):
self.shuffle = shuffle
self.repeat = repeat
# Check if the splits are correct
self._check_slit_sizes(train_size, test_size, val_size, predict_size)
# Begin Data splitting
splits_dict = {}
if train_size > 0:
@@ -179,23 +211,28 @@ class PinaDataModule(LightningDataModule):
len_condition = len(condition_dict['input_points'])
lengths = [
int(math.floor(len_condition * length)) for length in
int(len_condition * length) for length in
splits_dict.values()
]
remainder = len_condition - sum(lengths)
for i in range(remainder):
lengths[i % len(lengths)] += 1
splits_dict = {k: v for k, v in zip(splits_dict.keys(), lengths)
splits_dict = {k: max(1, v) for k, v in zip(splits_dict.keys(), lengths)
}
to_return_dict = {}
offset = 0
for stage, stage_len in splits_dict.items():
to_return_dict[stage] = {k: v[offset:offset + stage_len]
for k, v in condition_dict.items() if
k != 'equation'
# Equations are NEVER dataloaded
}
if offset + stage_len > len_condition:
offset = len_condition - 1
continue
offset += stage_len
return to_return_dict
@@ -234,6 +271,26 @@ class PinaDataModule(LightningDataModule):
dataset_dict[key].update({condition_name: data})
return dataset_dict
def _create_dataloader(self, split, dataset):
shuffle = self.shuffle if split == 'train' else False
# Use custom batching (good if batch size is large)
if self.batch_size is not None:
sampler = PinaSampler(dataset, self.batch_size,
shuffle, self.automatic_batching)
if self.automatic_batching:
collate = Collator(self.find_max_conditions_lengths(split))
else:
collate = Collator(None, dataset)
return DataLoader(dataset, self.batch_size,
collate_fn=collate, sampler=sampler)
dataloader = DummyDataloader(dataset)
dataloader.dataset = self._transfer_batch_to_device(
dataloader.dataset, self.trainer.strategy.root_device, 0)
self.transfer_batch_to_device = self._transfer_batch_to_device_dummy
return dataloader
def find_max_conditions_lengths(self, split):
max_conditions_lengths = {}
for k, v in self.collector_splits[split].items():
@@ -250,52 +307,19 @@ class PinaDataModule(LightningDataModule):
"""
Create the validation dataloader
"""
# Use custom batching (good if batch size is large)
if self.batch_size is not None:
sampler = PinaSampler(self.val_dataset, self.batch_size,
self.shuffle, self.automatic_batching)
if self.automatic_batching:
collate = Collator(self.find_max_conditions_lengths('val'))
else:
collate = Collator(None, self.val_dataset)
return DataLoader(self.val_dataset, self.batch_size,
collate_fn=collate, sampler=sampler)
dataloader = DummyDataloader(self.val_dataset,
self.trainer.strategy.root_device)
dataloader.dataset = self._transfer_batch_to_device(dataloader.dataset,
self.trainer.strategy.root_device,
0)
self.transfer_batch_to_device = self._transfer_batch_to_device_dummy
return dataloader
return self._create_dataloader('val', self.val_dataset)
def train_dataloader(self):
"""
Create the training dataloader
"""
# Use custom batching (good if batch size is large)
if self.batch_size is not None:
sampler = PinaSampler(self.train_dataset, self.batch_size,
self.shuffle, self.automatic_batching)
if self.automatic_batching:
collate = Collator(self.find_max_conditions_lengths('train'))
else:
collate = Collator(None, self.train_dataset)
return DataLoader(self.train_dataset, self.batch_size,
collate_fn=collate, sampler=sampler)
dataloader = DummyDataloader(self.train_dataset,
self.trainer.strategy.root_device)
dataloader.dataset = self._transfer_batch_to_device(dataloader.dataset,
self.trainer.strategy.root_device,
0)
self.transfer_batch_to_device = self._transfer_batch_to_device_dummy
return dataloader
return self._create_dataloader('train', self.train_dataset)
def test_dataloader(self):
"""
Create the testing dataloader
"""
raise NotImplementedError("Test dataloader not implemented")
return self._create_dataloader('test', self.test_dataset)
def predict_dataloader(self):
"""
@@ -303,7 +327,8 @@ class PinaDataModule(LightningDataModule):
"""
raise NotImplementedError("Predict dataloader not implemented")
def _transfer_batch_to_device_dummy(self, batch, device, dataloader_idx):
@staticmethod
def _transfer_batch_to_device_dummy(batch, device, dataloader_idx):
return batch
def _transfer_batch_to_device(self, batch, device, dataloader_idx):
@@ -312,10 +337,34 @@ class PinaDataModule(LightningDataModule):
training loop and is used to transfer the batch to the device.
"""
batch = [
(k, super(LightningDataModule, self).transfer_batch_to_device(v,
device,
dataloader_idx))
(k,
super(LightningDataModule, self).transfer_batch_to_device(
v, device, dataloader_idx))
for k, v in batch.items()
]
return batch
@staticmethod
def _check_slit_sizes(train_size, test_size, val_size, predict_size):
"""
Check if the splits are correct
"""
if train_size < 0 or test_size < 0 or val_size < 0 or predict_size < 0:
raise ValueError("The splits must be positive")
if abs(train_size + test_size + val_size + predict_size - 1) > 1e-6:
raise ValueError("The sum of the splits must be 1")
@property
def input_points(self):
"""
# TODO
"""
to_return = {}
if hasattr(self, "train_dataset") and self.train_dataset is not None:
to_return["train"] = self.train_dataset.input_points
if hasattr(self, "val_dataset") and self.val_dataset is not None:
to_return["val"] = self.val_dataset.input_points
if hasattr(self, "test_dataset") and self.test_dataset is not None:
to_return = self.test_dataset.input_points
return to_return