Update solvers (#434)
* Enable DDP training with batch_size=None and add validity check for split sizes * Refactoring SolverInterfaces (#435) * Solver update + weighting * Updating PINN for 0.2 * Modify GAROM + tests * Adding more versatile loggers * Disable compilation when running on Windows * Fix tests --------- Co-authored-by: giovanni <giovanni.canali98@yahoo.it> Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
This commit is contained in:
committed by
Nicola Demo
parent
780c4921eb
commit
9cae9a438f
@@ -36,8 +36,7 @@ class AbstractProblem(metaclass=ABCMeta):
|
||||
if not hasattr(self, "domains"):
|
||||
self.domains = {}
|
||||
for cond_name, cond in self.conditions.items():
|
||||
if isinstance(cond, (DomainEquationCondition,
|
||||
InputPointsEquationCondition)):
|
||||
if isinstance(cond, DomainEquationCondition):
|
||||
if isinstance(cond.domain, DomainInterface):
|
||||
self.domains[cond_name] = cond.domain
|
||||
cond.domain = cond_name
|
||||
|
||||
@@ -1,8 +1,13 @@
|
||||
__all__ = [
|
||||
'Poisson2DSquareProblem',
|
||||
'SupervisedProblem'
|
||||
|
||||
'SupervisedProblem',
|
||||
'InversePoisson2DSquareProblem',
|
||||
'DiffusionReactionProblem',
|
||||
'InverseDiffusionReactionProblem'
|
||||
]
|
||||
|
||||
from .poisson_2d_square import Poisson2DSquareProblem
|
||||
from .supervised_problem import SupervisedProblem
|
||||
from .supervised_problem import SupervisedProblem
|
||||
from .inverse_poisson_2d_square import InversePoisson2DSquareProblem
|
||||
from .diffusion_reaction import DiffusionReactionProblem
|
||||
from .inverse_diffusion_reaction import InverseDiffusionReactionProblem
|
||||
|
||||
45
pina/problem/zoo/diffusion_reaction.py
Normal file
45
pina/problem/zoo/diffusion_reaction.py
Normal file
@@ -0,0 +1,45 @@
|
||||
""" Definition of the diffusion-reaction problem."""
|
||||
|
||||
import torch
|
||||
from pina import Condition
|
||||
from pina.problem import SpatialProblem, TimeDependentProblem
|
||||
from pina.equation.equation import Equation
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.operators import grad
|
||||
|
||||
def diffusion_reaction(input_, output_):
|
||||
"""
|
||||
Implementation of the diffusion-reaction equation.
|
||||
"""
|
||||
x = input_.extract('x')
|
||||
t = input_.extract('t')
|
||||
u_t = grad(output_, input_, d='t')
|
||||
u_x = grad(output_, input_, d='x')
|
||||
u_xx = grad(u_x, input_, d='x')
|
||||
r = torch.exp(-t) * (1.5 * torch.sin(2*x) + (8/3) * torch.sin(3*x) +
|
||||
(15/4) * torch.sin(4*x) + (63/8) * torch.sin(8*x))
|
||||
return u_t - u_xx - r
|
||||
|
||||
|
||||
class DiffusionReactionProblem(TimeDependentProblem, SpatialProblem):
|
||||
"""
|
||||
Implementation of the diffusion-reaction problem on the spatial interval
|
||||
[-pi, pi] and temporal interval [0,1].
|
||||
"""
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [-torch.pi, torch.pi]})
|
||||
temporal_domain = CartesianDomain({'t': [0, 1]})
|
||||
|
||||
conditions = {
|
||||
'D': Condition(
|
||||
domain=CartesianDomain({'x': [-torch.pi, torch.pi], 't': [0, 1]}),
|
||||
equation=Equation(diffusion_reaction))
|
||||
}
|
||||
|
||||
def _solution(self, pts):
|
||||
t = pts.extract('t')
|
||||
x = pts.extract('x')
|
||||
return torch.exp(-t) * (
|
||||
torch.sin(x) + (1/2)*torch.sin(2*x) + (1/3)*torch.sin(3*x) +
|
||||
(1/4)*torch.sin(4*x) + (1/8)*torch.sin(8*x)
|
||||
)
|
||||
51
pina/problem/zoo/inverse_diffusion_reaction.py
Normal file
51
pina/problem/zoo/inverse_diffusion_reaction.py
Normal file
@@ -0,0 +1,51 @@
|
||||
""" Definition of the diffusion-reaction problem."""
|
||||
|
||||
import torch
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.problem import SpatialProblem, TimeDependentProblem, InverseProblem
|
||||
from pina.equation.equation import Equation
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.operators import grad
|
||||
|
||||
def diffusion_reaction(input_, output_):
|
||||
"""
|
||||
Implementation of the diffusion-reaction equation.
|
||||
"""
|
||||
x = input_.extract('x')
|
||||
t = input_.extract('t')
|
||||
u_t = grad(output_, input_, d='t')
|
||||
u_x = grad(output_, input_, d='x')
|
||||
u_xx = grad(u_x, input_, d='x')
|
||||
r = torch.exp(-t) * (1.5 * torch.sin(2*x) + (8/3) * torch.sin(3*x) +
|
||||
(15/4) * torch.sin(4*x) + (63/8) * torch.sin(8*x))
|
||||
return u_t - u_xx - r
|
||||
|
||||
class InverseDiffusionReactionProblem(TimeDependentProblem,
|
||||
SpatialProblem,
|
||||
InverseProblem):
|
||||
"""
|
||||
Implementation of the diffusion-reaction inverse problem on the spatial
|
||||
interval [-pi, pi] and temporal interval [0,1], with unknown parameters
|
||||
in the interval [-1,1].
|
||||
"""
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [-torch.pi, torch.pi]})
|
||||
temporal_domain = CartesianDomain({'t': [0, 1]})
|
||||
unknown_parameter_domain = CartesianDomain({'mu': [-1, 1]})
|
||||
|
||||
conditions = {
|
||||
'D': Condition(
|
||||
domain=CartesianDomain({'x': [-torch.pi, torch.pi], 't': [0, 1]}),
|
||||
equation=Equation(diffusion_reaction)),
|
||||
'data' : Condition(
|
||||
input_points=LabelTensor(torch.randn(10, 2), ['x', 't']),
|
||||
output_points=LabelTensor(torch.randn(10, 1), ['u'])),
|
||||
}
|
||||
|
||||
def _solution(self, pts):
|
||||
t = pts.extract('t')
|
||||
x = pts.extract('x')
|
||||
return torch.exp(-t) * (
|
||||
torch.sin(x) + (1/2)*torch.sin(2*x) + (1/3)*torch.sin(3*x) +
|
||||
(1/4)*torch.sin(4*x) + (1/8)*torch.sin(8*x)
|
||||
)
|
||||
50
pina/problem/zoo/inverse_poisson_2d_square.py
Normal file
50
pina/problem/zoo/inverse_poisson_2d_square.py
Normal file
@@ -0,0 +1,50 @@
|
||||
""" Definition of the inverse Poisson problem on a square domain."""
|
||||
|
||||
import torch
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.problem import SpatialProblem, InverseProblem
|
||||
from pina.operators import laplacian
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
|
||||
def laplace_equation(input_, output_, params_):
|
||||
"""
|
||||
Implementation of the laplace equation.
|
||||
"""
|
||||
force_term = torch.exp(- 2*(input_.extract(['x']) - params_['mu1'])**2
|
||||
- 2*(input_.extract(['y']) - params_['mu2'])**2)
|
||||
delta_u = laplacian(output_, input_, components=['u'], d=['x', 'y'])
|
||||
return delta_u - force_term
|
||||
|
||||
class InversePoisson2DSquareProblem(SpatialProblem, InverseProblem):
|
||||
"""
|
||||
Implementation of the inverse 2-dimensional Poisson problem
|
||||
on a square domain, with parameter domain [-1, 1] x [-1, 1].
|
||||
"""
|
||||
output_variables = ['u']
|
||||
x_min, x_max = -2, 2
|
||||
y_min, y_max = -2, 2
|
||||
data_input = LabelTensor(torch.rand(10, 2), ['x', 'y'])
|
||||
data_output = LabelTensor(torch.rand(10, 1), ['u'])
|
||||
spatial_domain = CartesianDomain({'x': [x_min, x_max], 'y': [y_min, y_max]})
|
||||
unknown_parameter_domain = CartesianDomain({'mu1': [-1, 1], 'mu2': [-1, 1]})
|
||||
|
||||
domains = {
|
||||
'g1': CartesianDomain({'x': [x_min, x_max], 'y': y_max}),
|
||||
'g2': CartesianDomain({'x': [x_min, x_max], 'y': y_min}),
|
||||
'g3': CartesianDomain({'x': x_max, 'y': [y_min, y_max]}),
|
||||
'g4': CartesianDomain({'x': x_min, 'y': [y_min, y_max]}),
|
||||
'D': CartesianDomain({'x': [x_min, x_max], 'y': [y_min, y_max]}),
|
||||
}
|
||||
|
||||
conditions = {
|
||||
'nil_g1': Condition(domain='g1', equation=FixedValue(0.0)),
|
||||
'nil_g2': Condition(domain='g2', equation=FixedValue(0.0)),
|
||||
'nil_g3': Condition(domain='g3', equation=FixedValue(0.0)),
|
||||
'nil_g4': Condition(domain='g4', equation=FixedValue(0.0)),
|
||||
'laplace_D': Condition(domain='D', equation=Equation(laplace_equation)),
|
||||
'data': Condition(
|
||||
input_points=data_input.extract(['x', 'y']),
|
||||
output_points=data_output)
|
||||
}
|
||||
@@ -2,23 +2,27 @@
|
||||
|
||||
from pina.problem import SpatialProblem
|
||||
from pina.operators import laplacian
|
||||
from pina import LabelTensor, Condition
|
||||
from pina import Condition
|
||||
from pina.domain import CartesianDomain
|
||||
from pina.equation.equation import Equation
|
||||
from pina.equation.equation_factory import FixedValue
|
||||
import torch
|
||||
|
||||
def laplace_equation(input_, output_):
|
||||
"""
|
||||
Implementation of the laplace equation.
|
||||
"""
|
||||
force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
|
||||
torch.sin(input_.extract(['y']) * torch.pi))
|
||||
delta_u = laplacian(output_.extract(['u']), input_)
|
||||
return delta_u - force_term
|
||||
|
||||
|
||||
my_laplace = Equation(laplace_equation)
|
||||
|
||||
|
||||
class Poisson2DSquareProblem(SpatialProblem):
|
||||
"""
|
||||
Implementation of the 2-dimensional Poisson problem on a square domain.
|
||||
"""
|
||||
output_variables = ['u']
|
||||
spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
|
||||
|
||||
@@ -31,10 +35,10 @@ class Poisson2DSquareProblem(SpatialProblem):
|
||||
}
|
||||
|
||||
conditions = {
|
||||
'nil_g1': Condition(domain='D', equation=FixedValue(0.0)),
|
||||
'nil_g2': Condition(domain='D', equation=FixedValue(0.0)),
|
||||
'nil_g3': Condition(domain='D', equation=FixedValue(0.0)),
|
||||
'nil_g4': Condition(domain='D', equation=FixedValue(0.0)),
|
||||
'nil_g1': Condition(domain='g1', equation=FixedValue(0.0)),
|
||||
'nil_g2': Condition(domain='g2', equation=FixedValue(0.0)),
|
||||
'nil_g3': Condition(domain='g3', equation=FixedValue(0.0)),
|
||||
'nil_g4': Condition(domain='g4', equation=FixedValue(0.0)),
|
||||
'laplace_D': Condition(domain='D', equation=my_laplace),
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user