Update solvers (#434)

* Enable DDP training with batch_size=None and add validity check for split sizes
* Refactoring SolverInterfaces (#435)
* Solver update + weighting
* Updating PINN for 0.2
* Modify GAROM + tests
* Adding more versatile loggers
* Disable compilation when running on Windows
* Fix tests

---------

Co-authored-by: giovanni <giovanni.canali98@yahoo.it>
Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
This commit is contained in:
Dario Coscia
2025-02-17 11:26:21 +01:00
committed by Nicola Demo
parent 780c4921eb
commit 9cae9a438f
50 changed files with 2848 additions and 4187 deletions

View File

@@ -0,0 +1,51 @@
""" Definition of the diffusion-reaction problem."""
import torch
from pina import Condition, LabelTensor
from pina.problem import SpatialProblem, TimeDependentProblem, InverseProblem
from pina.equation.equation import Equation
from pina.domain import CartesianDomain
from pina.operators import grad
def diffusion_reaction(input_, output_):
"""
Implementation of the diffusion-reaction equation.
"""
x = input_.extract('x')
t = input_.extract('t')
u_t = grad(output_, input_, d='t')
u_x = grad(output_, input_, d='x')
u_xx = grad(u_x, input_, d='x')
r = torch.exp(-t) * (1.5 * torch.sin(2*x) + (8/3) * torch.sin(3*x) +
(15/4) * torch.sin(4*x) + (63/8) * torch.sin(8*x))
return u_t - u_xx - r
class InverseDiffusionReactionProblem(TimeDependentProblem,
SpatialProblem,
InverseProblem):
"""
Implementation of the diffusion-reaction inverse problem on the spatial
interval [-pi, pi] and temporal interval [0,1], with unknown parameters
in the interval [-1,1].
"""
output_variables = ['u']
spatial_domain = CartesianDomain({'x': [-torch.pi, torch.pi]})
temporal_domain = CartesianDomain({'t': [0, 1]})
unknown_parameter_domain = CartesianDomain({'mu': [-1, 1]})
conditions = {
'D': Condition(
domain=CartesianDomain({'x': [-torch.pi, torch.pi], 't': [0, 1]}),
equation=Equation(diffusion_reaction)),
'data' : Condition(
input_points=LabelTensor(torch.randn(10, 2), ['x', 't']),
output_points=LabelTensor(torch.randn(10, 1), ['u'])),
}
def _solution(self, pts):
t = pts.extract('t')
x = pts.extract('x')
return torch.exp(-t) * (
torch.sin(x) + (1/2)*torch.sin(2*x) + (1/3)*torch.sin(3*x) +
(1/4)*torch.sin(4*x) + (1/8)*torch.sin(8*x)
)