Update solvers (#434)

* Enable DDP training with batch_size=None and add validity check for split sizes
* Refactoring SolverInterfaces (#435)
* Solver update + weighting
* Updating PINN for 0.2
* Modify GAROM + tests
* Adding more versatile loggers
* Disable compilation when running on Windows
* Fix tests

---------

Co-authored-by: giovanni <giovanni.canali98@yahoo.it>
Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
This commit is contained in:
Dario Coscia
2025-02-17 11:26:21 +01:00
committed by Nicola Demo
parent 780c4921eb
commit 9cae9a438f
50 changed files with 2848 additions and 4187 deletions

View File

@@ -1,185 +1,134 @@
import pytest
import torch
from pina.problem import SpatialProblem, InverseProblem
from pina.operators import laplacian
from pina.domain import CartesianDomain
from pina import Condition, LabelTensor
from pina.solvers import PINN
from pina.trainer import Trainer
from pina import LabelTensor, Condition
from pina.model import FeedForward
from pina.equation import Equation
from pina.equation.equation_factory import FixedValue
from pina.loss import LpLoss
from pina.problem.zoo import Poisson2DSquareProblem
# class InversePoisson(SpatialProblem, InverseProblem):
# '''
# Problem definition for the Poisson equation.
# '''
# output_variables = ['u']
# x_min = -2
# x_max = 2
# y_min = -2
# y_max = 2
# data_input = LabelTensor(torch.rand(10, 2), ['x', 'y'])
# data_output = LabelTensor(torch.rand(10, 1), ['u'])
# spatial_domain = CartesianDomain({'x': [x_min, x_max], 'y': [y_min, y_max]})
# # define the ranges for the parameters
# unknown_parameter_domain = CartesianDomain({'mu1': [-1, 1], 'mu2': [-1, 1]})
# def laplace_equation(input_, output_, params_):
# '''
# Laplace equation with a force term.
# '''
# force_term = torch.exp(
# - 2*(input_.extract(['x']) - params_['mu1'])**2
# - 2*(input_.extract(['y']) - params_['mu2'])**2)
# delta_u = laplacian(output_, input_, components=['u'], d=['x', 'y'])
# return delta_u - force_term
# # define the conditions for the loss (boundary conditions, equation, data)
# conditions = {
# 'gamma1': Condition(domain=CartesianDomain({'x': [x_min, x_max],
# 'y': y_max}),
# equation=FixedValue(0.0, components=['u'])),
# 'gamma2': Condition(domain=CartesianDomain(
# {'x': [x_min, x_max], 'y': y_min
# }),
# equation=FixedValue(0.0, components=['u'])),
# 'gamma3': Condition(domain=CartesianDomain(
# {'x': x_max, 'y': [y_min, y_max]
# }),
# equation=FixedValue(0.0, components=['u'])),
# 'gamma4': Condition(domain=CartesianDomain(
# {'x': x_min, 'y': [y_min, y_max]
# }),
# equation=FixedValue(0.0, components=['u'])),
# 'D': Condition(domain=CartesianDomain(
# {'x': [x_min, x_max], 'y': [y_min, y_max]
# }),
# equation=Equation(laplace_equation)),
# 'data': Condition(input_points=data_input.extract(['x', 'y']),
# output_points=data_output)
# }
from pina.trainer import Trainer
from pina.solvers import PINN
from pina.condition import (
InputOutputPointsCondition,
InputPointsEquationCondition,
DomainEquationCondition
)
from pina.problem.zoo import (
Poisson2DSquareProblem as Poisson,
InversePoisson2DSquareProblem as InversePoisson
)
from torch._dynamo.eval_frame import OptimizedModule
# # make the problem
# poisson_problem = Poisson2DSquareProblem()
# model = FeedForward(len(poisson_problem.input_variables),
# len(poisson_problem.output_variables))
# model_extra_feats = FeedForward(
# len(poisson_problem.input_variables) + 1,
# len(poisson_problem.output_variables))
# define problems and model
problem = Poisson()
problem.discretise_domain(50)
inverse_problem = InversePoisson()
inverse_problem.discretise_domain(50)
model = FeedForward(
len(problem.input_variables),
len(problem.output_variables)
)
# add input-output condition to test supervised learning
input_pts = torch.rand(50, len(problem.input_variables))
input_pts = LabelTensor(input_pts, problem.input_variables)
output_pts = torch.rand(50, len(problem.output_variables))
output_pts = LabelTensor(output_pts, problem.output_variables)
problem.conditions['data'] = Condition(
input_points=input_pts,
output_points=output_pts
)
@pytest.mark.parametrize("problem", [problem, inverse_problem])
def test_constructor(problem):
solver = PINN(problem=problem, model=model)
assert solver.accepted_conditions_types == (
InputOutputPointsCondition,
InputPointsEquationCondition,
DomainEquationCondition
)
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_train(problem, batch_size, compile):
solver = PINN(model=model, problem=problem)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=batch_size,
train_size=1.,
val_size=0.,
test_size=0.,
compile=compile)
trainer.train()
# def test_constructor():
# PINN(problem=poisson_problem, model=model, extra_features=None)
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_validation(problem, batch_size, compile):
solver = PINN(model=model, problem=problem)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=batch_size,
train_size=0.9,
val_size=0.1,
test_size=0.,
compile=compile)
trainer.train()
if trainer.compile:
assert(isinstance(solver.model, OptimizedModule))
@pytest.mark.parametrize("problem", [problem, inverse_problem])
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_test(problem, batch_size, compile):
solver = PINN(model=model, problem=problem)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=batch_size,
train_size=0.7,
val_size=0.2,
test_size=0.1,
compile=compile)
trainer.test()
# def test_constructor_extra_feats():
# model_extra_feats = FeedForward(
# len(poisson_problem.input_variables) + 1,
# len(poisson_problem.output_variables))
# PINN(problem=poisson_problem,
# model=model_extra_feats)
@pytest.mark.parametrize("problem", [problem, inverse_problem])
def test_train_load_restore(problem):
dir = "tests/test_solvers/tmp"
problem = problem
solver = PINN(model=model, problem=problem)
trainer = Trainer(solver=solver,
max_epochs=5,
accelerator='cpu',
batch_size=None,
train_size=0.7,
val_size=0.2,
test_size=0.1,
default_root_dir=dir)
trainer.train()
# restore
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator='cpu')
new_trainer.train(
ckpt_path=f'{dir}/lightning_logs/version_0/checkpoints/' +
'epoch=4-step=5.ckpt')
# def test_train_cpu():
# poisson_problem = Poisson2DSquareProblem()
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
# n = 10
# poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
# pinn = PINN(problem = poisson_problem, model=model,
# extra_features=None, loss=LpLoss())
# trainer = Trainer(solver=pinn, max_epochs=1,
# accelerator='cpu', batch_size=20, val_size=0., train_size=1., test_size=0.)
# loading
new_solver = PINN.load_from_checkpoint(
f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt',
problem=problem, model=model)
# def test_train_load():
# tmpdir = "tests/tmp_load"
# poisson_problem = Poisson2DSquareProblem()
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
# n = 10
# poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
# pinn = PINN(problem=poisson_problem,
# model=model,
# extra_features=None,
# loss=LpLoss())
# trainer = Trainer(solver=pinn,
# max_epochs=15,
# accelerator='cpu',
# default_root_dir=tmpdir)
# trainer.train()
# new_pinn = PINN.load_from_checkpoint(
# f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt',
# problem = poisson_problem, model=model)
# test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10)
# assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1)
# assert new_pinn.forward(test_pts).extract(
# ['u']).shape == pinn.forward(test_pts).extract(['u']).shape
# torch.testing.assert_close(
# new_pinn.forward(test_pts).extract(['u']),
# pinn.forward(test_pts).extract(['u']))
# import shutil
# shutil.rmtree(tmpdir)
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
assert new_solver.forward(test_pts).shape == (20, 1)
assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
torch.testing.assert_close(
new_solver.forward(test_pts),
solver.forward(test_pts))
# def test_train_restore():
# tmpdir = "tests/tmp_restore"
# poisson_problem = Poisson2DSquareProblem()
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4']
# n = 10
# poisson_problem.discretise_domain(n, 'grid', locations=boundaries)
# pinn = PINN(problem=poisson_problem,
# model=model,
# extra_features=None,
# loss=LpLoss())
# trainer = Trainer(solver=pinn,
# max_epochs=5,
# accelerator='cpu',
# default_root_dir=tmpdir)
# trainer.train()
# ntrainer = Trainer(solver=pinn, max_epochs=15, accelerator='cpu')
# t = ntrainer.train(
# ckpt_path=f'{tmpdir}/lightning_logs/version_0/'
# 'checkpoints/epoch=4-step=5.ckpt')
# import shutil
# shutil.rmtree(tmpdir)
# def test_train_inverse_problem_cpu():
# poisson_problem = InversePoisson()
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4', 'D']
# n = 100
# poisson_problem.discretise_domain(n, 'random', locations=boundaries,
# variables=['x', 'y'])
# pinn = PINN(problem = poisson_problem, model=model,
# extra_features=None, loss=LpLoss())
# trainer = Trainer(solver=pinn, max_epochs=1,
# accelerator='cpu', batch_size=20)
# trainer.train()
# def test_train_inverse_problem_load():
# tmpdir = "tests/tmp_load_inv"
# poisson_problem = InversePoisson()
# boundaries = ['gamma1', 'gamma2', 'gamma3', 'gamma4', 'D']
# n = 100
# poisson_problem.discretise_domain(n, 'random', locations=boundaries)
# pinn = PINN(problem=poisson_problem,
# model=model,
# extra_features=None,
# loss=LpLoss())
# trainer = Trainer(solver=pinn,
# max_epochs=15,
# accelerator='cpu',
# default_root_dir=tmpdir)
# trainer.train()
# new_pinn = PINN.load_from_checkpoint(
# f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt',
# problem = poisson_problem, model=model)
# test_pts = CartesianDomain({'x': [0, 1], 'y': [0, 1]}).sample(10)
# assert new_pinn.forward(test_pts).extract(['u']).shape == (10, 1)
# assert new_pinn.forward(test_pts).extract(
# ['u']).shape == pinn.forward(test_pts).extract(['u']).shape
# torch.testing.assert_close(
# new_pinn.forward(test_pts).extract(['u']),
# pinn.forward(test_pts).extract(['u']))
# import shutil
# shutil.rmtree(tmpdir)
# rm directories
import shutil
shutil.rmtree('tests/test_solvers/tmp')