Update solvers (#434)
* Enable DDP training with batch_size=None and add validity check for split sizes * Refactoring SolverInterfaces (#435) * Solver update + weighting * Updating PINN for 0.2 * Modify GAROM + tests * Adding more versatile loggers * Disable compilation when running on Windows * Fix tests --------- Co-authored-by: giovanni <giovanni.canali98@yahoo.it> Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
This commit is contained in:
committed by
Nicola Demo
parent
780c4921eb
commit
9cae9a438f
@@ -1,105 +1,187 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina.problem import AbstractProblem
|
||||
from pina import Condition, LabelTensor
|
||||
from pina.problem import AbstractProblem
|
||||
from pina.condition import InputOutputPointsCondition
|
||||
from pina.solvers import ReducedOrderModelSolver
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.loss import LpLoss
|
||||
from pina.problem.zoo import Poisson2DSquareProblem
|
||||
from torch._dynamo.eval_frame import OptimizedModule
|
||||
|
||||
|
||||
# class NeuralOperatorProblem(AbstractProblem):
|
||||
# input_variables = ['u_0', 'u_1']
|
||||
# output_variables = [f'u_{i}' for i in range(100)]
|
||||
# conditions = {'data' : Condition(input_points=
|
||||
# LabelTensor(torch.rand(10, 2),
|
||||
# input_variables),
|
||||
# output_points=
|
||||
# LabelTensor(torch.rand(10, 100),
|
||||
# output_variables))}
|
||||
class LabelTensorProblem(AbstractProblem):
|
||||
input_variables = ['u_0', 'u_1']
|
||||
output_variables = ['u']
|
||||
conditions = {
|
||||
'data': Condition(
|
||||
input_points=LabelTensor(torch.randn(20, 2), ['u_0', 'u_1']),
|
||||
output_points=LabelTensor(torch.randn(20, 1), ['u'])),
|
||||
}
|
||||
|
||||
|
||||
# # make the problem + extra feats
|
||||
# class AE(torch.nn.Module):
|
||||
# def __init__(self, input_dimensions, rank):
|
||||
# super().__init__()
|
||||
# self.encode = FeedForward(input_dimensions, rank, layers=[input_dimensions//4])
|
||||
# self.decode = FeedForward(rank, input_dimensions, layers=[input_dimensions//4])
|
||||
# class AE_missing_encode(torch.nn.Module):
|
||||
# def __init__(self, input_dimensions, rank):
|
||||
# super().__init__()
|
||||
# self.encode = FeedForward(input_dimensions, rank, layers=[input_dimensions//4])
|
||||
# class AE_missing_decode(torch.nn.Module):
|
||||
# def __init__(self, input_dimensions, rank):
|
||||
# super().__init__()
|
||||
# self.decode = FeedForward(rank, input_dimensions, layers=[input_dimensions//4])
|
||||
|
||||
# rank = 10
|
||||
# problem = NeuralOperatorProblem()
|
||||
# interpolation_net = FeedForward(len(problem.input_variables),
|
||||
# rank)
|
||||
# reduction_net = AE(len(problem.output_variables), rank)
|
||||
|
||||
# def test_constructor():
|
||||
# ReducedOrderModelSolver(problem=problem,reduction_network=reduction_net,
|
||||
# interpolation_network=interpolation_net)
|
||||
# with pytest.raises(SyntaxError):
|
||||
# ReducedOrderModelSolver(problem=problem,
|
||||
# reduction_network=AE_missing_encode(
|
||||
# len(problem.output_variables), rank),
|
||||
# interpolation_network=interpolation_net)
|
||||
# ReducedOrderModelSolver(problem=problem,
|
||||
# reduction_network=AE_missing_decode(
|
||||
# len(problem.output_variables), rank),
|
||||
# interpolation_network=interpolation_net)
|
||||
class TensorProblem(AbstractProblem):
|
||||
input_variables = ['u_0', 'u_1']
|
||||
output_variables = ['u']
|
||||
conditions = {
|
||||
'data': Condition(
|
||||
input_points=torch.randn(20, 2),
|
||||
output_points=torch.randn(20, 1))
|
||||
}
|
||||
|
||||
|
||||
# def test_train_cpu():
|
||||
# solver = ReducedOrderModelSolver(problem = problem,reduction_network=reduction_net,
|
||||
# interpolation_network=interpolation_net, loss=LpLoss())
|
||||
# trainer = Trainer(solver=solver, max_epochs=3, accelerator='cpu', batch_size=20)
|
||||
# trainer.train()
|
||||
class AE(torch.nn.Module):
|
||||
def __init__(self, input_dimensions, rank):
|
||||
super().__init__()
|
||||
self.encode = FeedForward(
|
||||
input_dimensions, rank, layers=[input_dimensions//4])
|
||||
self.decode = FeedForward(
|
||||
rank, input_dimensions, layers=[input_dimensions//4])
|
||||
|
||||
|
||||
# def test_train_restore():
|
||||
# tmpdir = "tests/tmp_restore"
|
||||
# solver = ReducedOrderModelSolver(problem=problem,
|
||||
# reduction_network=reduction_net,
|
||||
# interpolation_network=interpolation_net,
|
||||
# loss=LpLoss())
|
||||
# trainer = Trainer(solver=solver,
|
||||
# max_epochs=5,
|
||||
# accelerator='cpu',
|
||||
# default_root_dir=tmpdir)
|
||||
# trainer.train()
|
||||
# ntrainer = Trainer(solver=solver, max_epochs=15, accelerator='cpu')
|
||||
# t = ntrainer.train(
|
||||
# ckpt_path=f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt')
|
||||
# import shutil
|
||||
# shutil.rmtree(tmpdir)
|
||||
class AE_missing_encode(torch.nn.Module):
|
||||
def __init__(self, input_dimensions, rank):
|
||||
super().__init__()
|
||||
self.encode = FeedForward(
|
||||
input_dimensions, rank, layers=[input_dimensions//4])
|
||||
|
||||
|
||||
# def test_train_load():
|
||||
# tmpdir = "tests/tmp_load"
|
||||
# solver = ReducedOrderModelSolver(problem=problem,
|
||||
# reduction_network=reduction_net,
|
||||
# interpolation_network=interpolation_net,
|
||||
# loss=LpLoss())
|
||||
# trainer = Trainer(solver=solver,
|
||||
# max_epochs=15,
|
||||
# accelerator='cpu',
|
||||
# default_root_dir=tmpdir)
|
||||
# trainer.train()
|
||||
# new_solver = ReducedOrderModelSolver.load_from_checkpoint(
|
||||
# f'{tmpdir}/lightning_logs/version_0/checkpoints/epoch=14-step=15.ckpt',
|
||||
# problem = problem,reduction_network=reduction_net,
|
||||
# interpolation_network=interpolation_net)
|
||||
# test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
|
||||
# assert new_solver.forward(test_pts).shape == (20, 100)
|
||||
# assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
|
||||
# torch.testing.assert_close(
|
||||
# new_solver.forward(test_pts),
|
||||
# solver.forward(test_pts))
|
||||
# import shutil
|
||||
# shutil.rmtree(tmpdir)
|
||||
class AE_missing_decode(torch.nn.Module):
|
||||
def __init__(self, input_dimensions, rank):
|
||||
super().__init__()
|
||||
self.decode = FeedForward(
|
||||
rank, input_dimensions, layers=[input_dimensions//4])
|
||||
|
||||
|
||||
rank = 10
|
||||
model = AE(2, 1)
|
||||
interpolation_net = FeedForward(2, rank)
|
||||
reduction_net = AE(1, rank)
|
||||
|
||||
|
||||
def test_constructor():
|
||||
problem = TensorProblem()
|
||||
ReducedOrderModelSolver(problem=problem,
|
||||
interpolation_network=interpolation_net,
|
||||
reduction_network=reduction_net)
|
||||
ReducedOrderModelSolver(problem=LabelTensorProblem(),
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net)
|
||||
assert ReducedOrderModelSolver.accepted_conditions_types == InputOutputPointsCondition
|
||||
with pytest.raises(SyntaxError):
|
||||
ReducedOrderModelSolver(problem=problem,
|
||||
reduction_network=AE_missing_encode(
|
||||
len(problem.output_variables), rank),
|
||||
interpolation_network=interpolation_net)
|
||||
ReducedOrderModelSolver(problem=problem,
|
||||
reduction_network=AE_missing_decode(
|
||||
len(problem.output_variables), rank),
|
||||
interpolation_network=interpolation_net)
|
||||
with pytest.raises(ValueError):
|
||||
ReducedOrderModelSolver(problem=Poisson2DSquareProblem(),
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
|
||||
@pytest.mark.parametrize("use_lt", [True, False])
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_train(use_lt, batch_size, compile):
|
||||
problem = LabelTensorProblem() if use_lt else TensorProblem()
|
||||
solver = ReducedOrderModelSolver(problem=problem,
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net, use_lt=use_lt)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=batch_size,
|
||||
train_size=1.,
|
||||
test_size=0.,
|
||||
val_size=0.,
|
||||
compile=compile)
|
||||
trainer.train()
|
||||
if trainer.compile:
|
||||
for v in solver.model.values():
|
||||
assert (isinstance(v, OptimizedModule))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("use_lt", [True, False])
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_validation(use_lt, compile):
|
||||
problem = LabelTensorProblem() if use_lt else TensorProblem()
|
||||
solver = ReducedOrderModelSolver(problem=problem,
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net, use_lt=use_lt)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=None,
|
||||
train_size=0.9,
|
||||
val_size=0.1,
|
||||
test_size=0.,
|
||||
compile=compile)
|
||||
trainer.train()
|
||||
if trainer.compile:
|
||||
for v in solver.model.values():
|
||||
assert (isinstance(v, OptimizedModule))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("use_lt", [True, False])
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_test(use_lt, compile):
|
||||
problem = LabelTensorProblem() if use_lt else TensorProblem()
|
||||
solver = ReducedOrderModelSolver(problem=problem,
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net, use_lt=use_lt)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=None,
|
||||
train_size=0.8,
|
||||
val_size=0.1,
|
||||
test_size=0.1,
|
||||
compile=compile)
|
||||
trainer.train()
|
||||
if trainer.compile:
|
||||
for v in solver.model.values():
|
||||
assert (isinstance(v, OptimizedModule))
|
||||
|
||||
|
||||
def test_train_load_restore():
|
||||
dir = "tests/test_solvers/tmp/"
|
||||
problem = LabelTensorProblem()
|
||||
solver = ReducedOrderModelSolver(problem=problem,
|
||||
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=5,
|
||||
accelerator='cpu',
|
||||
batch_size=None,
|
||||
train_size=0.9,
|
||||
test_size=0.1,
|
||||
val_size=0.,
|
||||
default_root_dir=dir)
|
||||
trainer.train()
|
||||
# restore
|
||||
ntrainer = Trainer(solver=solver,
|
||||
max_epochs=5,
|
||||
accelerator='cpu',)
|
||||
ntrainer.train(
|
||||
ckpt_path=f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt')
|
||||
# loading
|
||||
new_solver = ReducedOrderModelSolver.load_from_checkpoint(
|
||||
f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt',
|
||||
problem=problem,
|
||||
reduction_network=reduction_net,
|
||||
interpolation_network=interpolation_net)
|
||||
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
|
||||
assert new_solver.forward(test_pts).shape == (20, 1)
|
||||
assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
|
||||
torch.testing.assert_close(
|
||||
new_solver.forward(test_pts),
|
||||
solver.forward(test_pts))
|
||||
# rm directories
|
||||
import shutil
|
||||
shutil.rmtree('tests/test_solvers/tmp')
|
||||
|
||||
Reference in New Issue
Block a user