Update solvers (#434)
* Enable DDP training with batch_size=None and add validity check for split sizes * Refactoring SolverInterfaces (#435) * Solver update + weighting * Updating PINN for 0.2 * Modify GAROM + tests * Adding more versatile loggers * Disable compilation when running on Windows * Fix tests --------- Co-authored-by: giovanni <giovanni.canali98@yahoo.it> Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
This commit is contained in:
committed by
Nicola Demo
parent
780c4921eb
commit
9cae9a438f
159
tests/test_solvers/test_self_adaptive_pinn.py
Normal file
159
tests/test_solvers/test_self_adaptive_pinn.py
Normal file
@@ -0,0 +1,159 @@
|
||||
import torch
|
||||
import pytest
|
||||
|
||||
from pina import LabelTensor, Condition
|
||||
from pina.solvers import SelfAdaptivePINN as SAPINN
|
||||
from pina.trainer import Trainer
|
||||
from pina.model import FeedForward
|
||||
from pina.problem.zoo import (
|
||||
Poisson2DSquareProblem as Poisson,
|
||||
InversePoisson2DSquareProblem as InversePoisson
|
||||
)
|
||||
from pina.condition import (
|
||||
InputOutputPointsCondition,
|
||||
InputPointsEquationCondition,
|
||||
DomainEquationCondition
|
||||
)
|
||||
from torch._dynamo.eval_frame import OptimizedModule
|
||||
|
||||
|
||||
# make the problem
|
||||
problem = Poisson()
|
||||
problem.discretise_domain(50)
|
||||
inverse_problem = InversePoisson()
|
||||
inverse_problem.discretise_domain(50)
|
||||
model = FeedForward(
|
||||
len(problem.input_variables),
|
||||
len(problem.output_variables)
|
||||
)
|
||||
|
||||
# add input-output condition to test supervised learning
|
||||
input_pts = torch.rand(50, len(problem.input_variables))
|
||||
input_pts = LabelTensor(input_pts, problem.input_variables)
|
||||
output_pts = torch.rand(50, len(problem.output_variables))
|
||||
output_pts = LabelTensor(output_pts, problem.output_variables)
|
||||
problem.conditions['data'] = Condition(
|
||||
input_points=input_pts,
|
||||
output_points=output_pts
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
@pytest.mark.parametrize("weight_fn", [torch.nn.Sigmoid(), torch.nn.Tanh()])
|
||||
def test_constructor(problem, weight_fn):
|
||||
with pytest.raises(ValueError):
|
||||
SAPINN(model=model, problem=problem, weight_function=1)
|
||||
solver = SAPINN(problem=problem, model=model, weight_function=weight_fn)
|
||||
|
||||
assert solver.accepted_conditions_types == (
|
||||
InputOutputPointsCondition,
|
||||
InputPointsEquationCondition,
|
||||
DomainEquationCondition
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
def test_wrong_batch(problem):
|
||||
with pytest.raises(NotImplementedError):
|
||||
solver = SAPINN(model=model, problem=problem)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=10,
|
||||
train_size=1.,
|
||||
val_size=0.,
|
||||
test_size=0.)
|
||||
trainer.train()
|
||||
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_train(problem, compile):
|
||||
solver = SAPINN(model=model, problem=problem)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=None,
|
||||
train_size=1.,
|
||||
val_size=0.,
|
||||
test_size=0.,
|
||||
compile=compile)
|
||||
trainer.train()
|
||||
if trainer.compile:
|
||||
assert (all([isinstance(model, (OptimizedModule, torch.nn.ModuleDict))
|
||||
for model in solver.models]))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_validation(problem, compile):
|
||||
solver = SAPINN(model=model, problem=problem)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=None,
|
||||
train_size=0.9,
|
||||
val_size=0.1,
|
||||
test_size=0.,
|
||||
compile=compile)
|
||||
trainer.train()
|
||||
if trainer.compile:
|
||||
assert (all([isinstance(model, (OptimizedModule, torch.nn.ModuleDict))
|
||||
for model in solver.models]))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
@pytest.mark.parametrize("compile", [True, False])
|
||||
def test_solver_test(problem, compile):
|
||||
solver = SAPINN(model=model, problem=problem)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=2,
|
||||
accelerator='cpu',
|
||||
batch_size=None,
|
||||
train_size=0.7,
|
||||
val_size=0.2,
|
||||
test_size=0.1,
|
||||
compile=compile)
|
||||
trainer.test()
|
||||
if trainer.compile:
|
||||
assert (all([isinstance(model, (OptimizedModule, torch.nn.ModuleDict))
|
||||
for model in solver.models]))
|
||||
|
||||
|
||||
@pytest.mark.parametrize("problem", [problem, inverse_problem])
|
||||
def test_train_load_restore(problem):
|
||||
dir = "tests/test_solvers/tmp"
|
||||
problem = problem
|
||||
solver = SAPINN(model=model, problem=problem)
|
||||
trainer = Trainer(solver=solver,
|
||||
max_epochs=5,
|
||||
accelerator='cpu',
|
||||
batch_size=None,
|
||||
train_size=0.7,
|
||||
val_size=0.2,
|
||||
test_size=0.1,
|
||||
default_root_dir=dir)
|
||||
trainer.train()
|
||||
# restore
|
||||
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator='cpu')
|
||||
new_trainer.train(
|
||||
ckpt_path=f'{dir}/lightning_logs/version_0/checkpoints/' +
|
||||
'epoch=4-step=5.ckpt')
|
||||
|
||||
# loading
|
||||
new_solver = SAPINN.load_from_checkpoint(
|
||||
f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt',
|
||||
problem=problem, model=model)
|
||||
|
||||
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
|
||||
assert new_solver.forward(test_pts).shape == (20, 1)
|
||||
assert new_solver.forward(test_pts).shape == (
|
||||
solver.forward(test_pts).shape
|
||||
)
|
||||
torch.testing.assert_close(
|
||||
new_solver.forward(test_pts),
|
||||
solver.forward(test_pts))
|
||||
|
||||
# rm directories
|
||||
import shutil
|
||||
shutil.rmtree('tests/test_solvers/tmp')
|
||||
Reference in New Issue
Block a user