Update solvers (#434)

* Enable DDP training with batch_size=None and add validity check for split sizes
* Refactoring SolverInterfaces (#435)
* Solver update + weighting
* Updating PINN for 0.2
* Modify GAROM + tests
* Adding more versatile loggers
* Disable compilation when running on Windows
* Fix tests

---------

Co-authored-by: giovanni <giovanni.canali98@yahoo.it>
Co-authored-by: FilippoOlivo <filippo@filippoolivo.com>
This commit is contained in:
Dario Coscia
2025-02-17 11:26:21 +01:00
committed by Nicola Demo
parent 780c4921eb
commit 9cae9a438f
50 changed files with 2848 additions and 4187 deletions

View File

@@ -1,143 +1,133 @@
import torch
import pytest
from pina.problem import AbstractProblem, SpatialProblem
from pina import Condition, LabelTensor
from pina.condition import InputOutputPointsCondition
from pina.problem import AbstractProblem
from pina.solvers import SupervisedSolver
from pina.model import FeedForward
from pina.equation import Equation
from pina.equation.equation_factory import FixedValue
from pina.operators import laplacian
from pina.domain import CartesianDomain
from pina.trainer import Trainer
# in_ = LabelTensor(torch.tensor([[0., 1.]]), ['u_0', 'u_1'])
# out_ = LabelTensor(torch.tensor([[0.]]), ['u'])
from torch._dynamo.eval_frame import OptimizedModule
# class NeuralOperatorProblem(AbstractProblem):
# input_variables = ['u_0', 'u_1']
# output_variables = ['u']
# conditions = {
# 'data': Condition(input_points=in_, output_points=out_),
# }
class LabelTensorProblem(AbstractProblem):
input_variables = ['u_0', 'u_1']
output_variables = ['u']
conditions = {
'data': Condition(
input_points=LabelTensor(torch.randn(20, 2), ['u_0', 'u_1']),
output_points=LabelTensor(torch.randn(20, 1), ['u'])),
}
# class myFeature(torch.nn.Module):
# """
# Feature: sin(x)
# """
# def __init__(self):
# super(myFeature, self).__init__()
# def forward(self, x):
# t = (torch.sin(x.extract(['u_0']) * torch.pi) *
# torch.sin(x.extract(['u_1']) * torch.pi))
# return LabelTensor(t, ['sin(x)sin(y)'])
class TensorProblem(AbstractProblem):
input_variables = ['u_0', 'u_1']
output_variables = ['u']
conditions = {
'data': Condition(
input_points=torch.randn(20, 2),
output_points=torch.randn(20, 1))
}
# problem = NeuralOperatorProblem()
# extra_feats = [myFeature()]
# model = FeedForward(len(problem.input_variables), len(problem.output_variables))
# model_extra_feats = FeedForward(
# len(problem.input_variables) + 1, len(problem.output_variables))
model = FeedForward(2, 1)
# def test_constructor():
# SupervisedSolver(problem=problem, model=model)
def test_constructor():
SupervisedSolver(problem=TensorProblem(), model=model)
SupervisedSolver(problem=LabelTensorProblem(), model=model)
assert SupervisedSolver.accepted_conditions_types == (
InputOutputPointsCondition
)
# test_constructor()
@pytest.mark.parametrize("batch_size", [None, 1, 5, 20])
@pytest.mark.parametrize("use_lt", [True, False])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_train(use_lt, batch_size, compile):
problem = LabelTensorProblem() if use_lt else TensorProblem()
solver = SupervisedSolver(problem=problem, model=model, use_lt=use_lt)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=batch_size,
train_size=1.,
test_size=0.,
val_size=0.,
compile=compile)
trainer.train()
if trainer.compile:
assert (isinstance(solver.model, OptimizedModule))
# def laplace_equation(input_, output_):
# force_term = (torch.sin(input_.extract(['x']) * torch.pi) *
# torch.sin(input_.extract(['y']) * torch.pi))
# delta_u = laplacian(output_.extract(['u']), input_)
# return delta_u - force_term
@pytest.mark.parametrize("use_lt", [True, False])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_validation(use_lt, compile):
problem = LabelTensorProblem() if use_lt else TensorProblem()
solver = SupervisedSolver(problem=problem, model=model, use_lt=use_lt)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=None,
train_size=0.9,
val_size=0.1,
test_size=0.,
compile=compile)
trainer.train()
if trainer.compile:
assert (isinstance(solver.model, OptimizedModule))
# my_laplace = Equation(laplace_equation)
@pytest.mark.parametrize("use_lt", [True, False])
@pytest.mark.parametrize("compile", [True, False])
def test_solver_test(use_lt, compile):
problem = LabelTensorProblem() if use_lt else TensorProblem()
solver = SupervisedSolver(problem=problem, model=model, use_lt=use_lt)
trainer = Trainer(solver=solver,
max_epochs=2,
accelerator='cpu',
batch_size=None,
train_size=0.8,
val_size=0.1,
test_size=0.1,
compile=compile)
trainer.test()
if trainer.compile:
assert (isinstance(solver.model, OptimizedModule))
# class Poisson(SpatialProblem):
# output_variables = ['u']
# spatial_domain = CartesianDomain({'x': [0, 1], 'y': [0, 1]})
def test_train_load_restore():
dir = "tests/test_solvers/tmp/"
problem = LabelTensorProblem()
solver = SupervisedSolver(problem=problem, model=model)
trainer = Trainer(solver=solver,
max_epochs=5,
accelerator='cpu',
batch_size=None,
train_size=0.9,
test_size=0.1,
val_size=0.,
default_root_dir=dir)
trainer.train()
# conditions = {
# 'gamma1':
# Condition(domain=CartesianDomain({
# 'x': [0, 1],
# 'y': 1
# }),
# equation=FixedValue(0.0)),
# 'gamma2':
# Condition(domain=CartesianDomain({
# 'x': [0, 1],
# 'y': 0
# }),
# equation=FixedValue(0.0)),
# 'gamma3':
# Condition(domain=CartesianDomain({
# 'x': 1,
# 'y': [0, 1]
# }),
# equation=FixedValue(0.0)),
# 'gamma4':
# Condition(domain=CartesianDomain({
# 'x': 0,
# 'y': [0, 1]
# }),
# equation=FixedValue(0.0)),
# 'D':
# Condition(domain=CartesianDomain({
# 'x': [0, 1],
# 'y': [0, 1]
# }),
# equation=my_laplace),
# 'data':
# Condition(input_points=in_, output_points=out_)
# }
# restore
new_trainer = Trainer(solver=solver, max_epochs=5, accelerator='cpu')
new_trainer.train(
ckpt_path=f'{dir}/lightning_logs/version_0/checkpoints/' +
'epoch=4-step=5.ckpt')
# def poisson_sol(self, pts):
# return -(torch.sin(pts.extract(['x']) * torch.pi) *
# torch.sin(pts.extract(['y']) * torch.pi)) / (2 * torch.pi ** 2)
# loading
new_solver = SupervisedSolver.load_from_checkpoint(
f'{dir}/lightning_logs/version_0/checkpoints/epoch=4-step=5.ckpt',
problem=problem, model=model)
# truth_solution = poisson_sol
test_pts = LabelTensor(torch.rand(20, 2), problem.input_variables)
assert new_solver.forward(test_pts).shape == (20, 1)
assert new_solver.forward(test_pts).shape == solver.forward(test_pts).shape
torch.testing.assert_close(
new_solver.forward(test_pts),
solver.forward(test_pts))
# def test_wrong_constructor():
# poisson_problem = Poisson()
# with pytest.raises(ValueError):
# SupervisedSolver(problem=poisson_problem, model=model)
# def test_train_cpu():
# solver = SupervisedSolver(problem=problem, model=model)
# trainer = Trainer(solver=solver,
# max_epochs=200,
# accelerator='gpu',
# batch_size=5,
# train_size=1,
# test_size=0.,
# val_size=0.)
# trainer.train()
# test_train_cpu()
# def test_extra_features_constructor():
# SupervisedSolver(problem=problem,
# model=model_extra_feats,
# extra_features=extra_feats)
# def test_extra_features_train_cpu():
# solver = SupervisedSolver(problem=problem,
# model=model_extra_feats,
# extra_features=extra_feats)
# trainer = Trainer(solver=solver,
# max_epochs=200,
# accelerator='gpu',
# batch_size=5)
# trainer.train()
# rm directories
import shutil
shutil.rmtree('tests/test_solvers/tmp')