supervised working
This commit is contained in:
109
pina/domain/intersection_domain.py
Normal file
109
pina/domain/intersection_domain.py
Normal file
@@ -0,0 +1,109 @@
|
||||
"""Module for Intersection class. """
|
||||
|
||||
import torch
|
||||
from ..label_tensor import LabelTensor
|
||||
from .operation_interface import OperationInterface
|
||||
import random
|
||||
|
||||
|
||||
class Intersection(OperationInterface):
|
||||
|
||||
def __init__(self, geometries):
|
||||
r"""
|
||||
PINA implementation of Intersection of Domains.
|
||||
Given two sets :math:`A` and :math:`B` then the
|
||||
domain difference is defined as:
|
||||
|
||||
.. math::
|
||||
A \cap B = \{x \mid x \in A \land x \in B\},
|
||||
|
||||
with :math:`x` a point in :math:`\mathbb{R}^N` and :math:`N`
|
||||
the dimension of the geometry space.
|
||||
|
||||
:param list geometries: A list of geometries from ``pina.geometry``
|
||||
such as ``EllipsoidDomain`` or ``CartesianDomain``. The intersection
|
||||
will be taken between all the geometries in the list. The resulting
|
||||
geometry will be the intersection of all the geometries in the list.
|
||||
|
||||
:Example:
|
||||
>>> # Create two ellipsoid domains
|
||||
>>> ellipsoid1 = EllipsoidDomain({'x': [-1, 1], 'y': [-1, 1]})
|
||||
>>> ellipsoid2 = EllipsoidDomain({'x': [0, 2], 'y': [0, 2]})
|
||||
>>> # Create a Intersection of the ellipsoid domains
|
||||
>>> intersection = Intersection([ellipsoid1, ellipsoid2])
|
||||
"""
|
||||
super().__init__(geometries)
|
||||
|
||||
def is_inside(self, point, check_border=False):
|
||||
"""
|
||||
Check if a point is inside the ``Intersection`` domain.
|
||||
|
||||
:param point: Point to be checked.
|
||||
:type point: torch.Tensor
|
||||
:param bool check_border: If ``True``, the border is considered inside.
|
||||
:return: ``True`` if the point is inside the Intersection domain, ``False`` otherwise.
|
||||
:rtype: bool
|
||||
"""
|
||||
flag = 0
|
||||
for geometry in self.geometries:
|
||||
if geometry.is_inside(point, check_border):
|
||||
flag += 1
|
||||
return flag == len(self.geometries)
|
||||
|
||||
def sample(self, n, mode="random", variables="all"):
|
||||
"""
|
||||
Sample routine for ``Intersection`` domain.
|
||||
|
||||
:param int n: Number of points to sample in the shape.
|
||||
:param str mode: Mode for sampling, defaults to ``random``. Available modes include: ``random``.
|
||||
:param variables: Variables to be sampled, defaults to ``all``.
|
||||
:type variables: str | list[str]
|
||||
:return: Returns ``LabelTensor`` of n sampled points.
|
||||
:rtype: LabelTensor
|
||||
|
||||
:Example:
|
||||
>>> # Create two Cartesian domains
|
||||
>>> cartesian1 = CartesianDomain({'x': [0, 2], 'y': [0, 2]})
|
||||
>>> cartesian2 = CartesianDomain({'x': [1, 3], 'y': [1, 3]})
|
||||
>>> # Create a Intersection of the ellipsoid domains
|
||||
>>> intersection = Intersection([cartesian1, cartesian2])
|
||||
>>> # Sample
|
||||
>>> intersection.sample(n=5)
|
||||
LabelTensor([[1.7697, 1.8654],
|
||||
[1.2841, 1.1208],
|
||||
[1.7289, 1.9843],
|
||||
[1.3332, 1.2448],
|
||||
[1.9902, 1.4458]])
|
||||
>>> len(intersection.sample(n=5)
|
||||
5
|
||||
|
||||
"""
|
||||
if mode != "random":
|
||||
raise NotImplementedError(
|
||||
f"{mode} is not a valid mode for sampling."
|
||||
)
|
||||
|
||||
sampled = []
|
||||
|
||||
# calculate the number of points to sample for each geometry and the remainder.
|
||||
remainder = n % len(self.geometries)
|
||||
num_points = n // len(self.geometries)
|
||||
|
||||
# sample the points
|
||||
# NB. geometries as shuffled since if we sample
|
||||
# multiple times just one point, we would end
|
||||
# up sampling only from the first geometry.
|
||||
iter_ = random.sample(self.geometries, len(self.geometries))
|
||||
for i, geometry in enumerate(iter_):
|
||||
sampled_points = []
|
||||
# int(i < remainder) is one only if we have a remainder
|
||||
# different than zero. Notice that len(geometries) is
|
||||
# always smaller than remaider.
|
||||
# makes sure point is uniquely inside 1 shape.
|
||||
while len(sampled_points) < (num_points + int(i < remainder)):
|
||||
sample = geometry.sample(1, mode, variables)
|
||||
if self.is_inside(sample):
|
||||
sampled_points.append(sample)
|
||||
sampled += sampled_points
|
||||
|
||||
return LabelTensor(torch.cat(sampled), labels=self.variables)
|
||||
Reference in New Issue
Block a user